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ABSTRACT 
 

The risk level of several insecticides of various chemical classes was estimated for honeybee 
workers, Apis mellifera L. (Hymenoptera: Apidae). Lethal time calculation was used to risk 
assessment for honeybees. Bioassay tests were conducted with six insecticides [dinotefuran 
(neonicotinoid), methomyl (carbamate), profenofos (organophosphate), azadirachtin (botanical-
bioinsecticide), spinosad (bioinsecticide - an extract of the fermentation broth of soil actinomycete) 
and chlorfluazuron (IGR)] on honeybee workers by the insecticide / food mixture technique, at 
seven concentrations as ratios of recommended field rate [F (ug a. i. mL-1)], for 15 days. Results 
revealed that dinotefuran was significantly the most toxic to bees, which gave the shortest median 
lethal times (LT50s), 4.4, 4.9, 5.8, 6.4 and 10.3 days at concentrations of 1F×10-2, 5F×10-3, 1F×10-3, 
5F×10-4 and 1F×10-4, respectively. Moreover, it gave 100% bee mortality after one day exposure 
time, at two higher concentrations, (1F×10-1) and (5F×10-2). The toxicity order of the tested 
insecticides for honey bees (Based on LT95s) varied by the reducing in their concentrations, 
whereas it was: dinotefuran > methomyl > profenofos > azadirachtin > chlorfluazuron > spinosad, 
at the higher concentrations and this became azadirachtin > dinotefuran > profenofos > 
chlorfluazuron > methomyl > spinosad at the lowest concentrations. It was concluded that the 
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interaction among insecticide concentration, exposure time and its chemical class plays a great role 
in the risk level on honeybee workers. Spinosad and chlorfluazuron were significantly less toxic in 
comparison to the other insecticides tested and they can be safely applied to crops. 
 

 
Keywords: Dinotefuran; methomyl; profenofos; azadirachtin; chlorfluazuron; spinosad; bioassay tests; 

Apis mellifera; lethal time. 
 

1. INTRODUCTION 
 
Honey bees are significantly important to the 
environment, conserving biodiversity by providing 
essential pollination for a wide range of crops 
and wild plants. And for the important ecological 
and economic value of honey bees, there is a 
need to maintain healthy bee insects, not just 
locally or nationally, but globally. Pesticides have 
been targeted as a major factor, causing not only 
direct losses, but also reductions in honey and 
wax production and pollination benefits. The role 
played by honey bees in increasing the crop yield 
is 10-20 times greater than their values of honey 
production [1,2]. The increase in pesticides 
application for agriculture has exposed honey 
bees to a continual array of chemicals, including 
insecticides, fungicides, herbicides and insect 
growth regulators. As a result, residues of many 
pesticides and metabolites have been found in 
honey, beeswax and pollen, as well as adult and 
pupal bees [3,4,5,6]. A number of these 
compounds have also been shown to have sub-
lethal effects on bees, causing delayed 
development, shortened adult longevity and 
immune system impairment [7,8]. Insecticides 
caused a serious threat to bees because bees 
are insects and, therefore, are susceptible to any 
poison that was designed to kill insect pests. 
Consequently, strict toxicity studying was and still 
is required before such chemicals can be 
registered for applying to crop protection [9,10, 
11]. Neonicotinoids exhibited a significantly 
higher toxicity compared to all the other chemical 
classes [12,13,14,15,16,17,18,19,20,21]. In 
addition, several botanical insecticides, which are 
often touted as safe and environmentally friendly, 
might generate acute toxicity and sub-lethal 
effects on honey bees [22,23,24]. Many studies 
have well demonstrated that the time of exposure 
may strongly impact on mortality of honey bees 
exposed to sub-lethal doses [25,26,27]. 
Frequently, bees expose to pesticides and ingest 
their residues from contaminated pollen and 
nectar of crop plants and weeds [28]. Sub-lethal 
doses can also lead to mortality of 20 or 30% of 
honey bees [11]. Generally, sub-lethal doses 
create toxic effects that do not kill the honey 
bees but still affect their health [29,30].              
The classic principle of toxicology was “the 

concentration makes the toxicant,” and its 
modern version is “the concentration and the 
time of exposure make the toxicant.” These two 
factors, concentration and time help us 
understand the severity effects that pesticides 
may have on honey bees and their risk [11]. The 
purpose of this study is to compare the risk levels 
of various insecticides which belong different 
chemical classes, dinotefuran (neonicotinoid), 
methomyl (carbamate), profenofos 
(organophosphate), azadirachtin (botanical-
bioinsecticide), spinosad (bioinsecticide - an 
extract of the fermentation broth of soil 
actinomycete) and chlorfluazuron (IGR) on 
honeybee workers. 
 
2. MATERIALS AND METHODS 
 
2.1 Insecticides 
 
Dinotefuran: (RS)-1-methyl-2-nitro-3-(tetrahydro 
-3-furylmethyl) guanidine. 
 
Methomyl: methyl (1E)-N-(methylcarbamoyloxy) 
ethanimidothioate. 
 
Profenofos: O-4-bromo-2-chlorophenyl O-ethyl 
S-propyl phosphorothioate. 
 
Azadirachtin: dimethyl (3S,3aR,4S,5S,5aR,5a1 
R,7aS,8R,10S,10aS)-8- acetoxy- 3,3a,4,5,                     
5a,5a1,7a,8,9,10-decahydro-3,5- dihydroxy-4- 
{(1S,3S,7S,8R,9S,11R)-7-hydroxy-9-methyl- 
2,4,10-trioxatetracyclo [6.3.1.03,7.09,11] dodec-
5-en-11- yl}- 4- methyl-10[(E)-2-methylbut-2- 
enoyloxy]-1H,7Hnaphtho[1,8a,8-bc:4,4a-
c’]difuran-3,7a- dicarboxylate. 
 
Spinosad: (a mixture of 50-95% of spinosyn A 
and 50-5% spinosyn D) Spinosyn A: (2R, 3aS, 
5aR, 5bS, 9S, 13S, 14R, 16aS, 16bR) - 2- (6-
deoxy-2,3,4-tri-O-methyl- α- Lmannop-
yranosyloxy) – 13 - (4- dimethylamino - 2, 3, 4, 6- 
tetradeoxy- β-Derythrop-yranosyloxy)-9-ethyl-2, 
3, 3a, 5a, 5b, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16a, 
16bhexadecahydro- 14- methyl -1H-8 
oxacyclododeca [b] as-indacene-7,15-dione. 
Spinosyn D: (2S, 3aR, 5aS, 5bS, 9S, 13S, 14R, 
16aS, 16bR) - 2- (6-deoxy-2, 3, 4- tri- O- methyl- 
α-Lmannop-yranosyloxy) -13- (4-dimethylamino - 
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2, 3, 4, 6- tetradeoxy- β-Derythrop-yranosyloxy)-
9-ethyl-2, 3, 3a, 5a, 5b, 6, 7, 9, 10, 11, 12, 13, 
14, 15, 16a, 16b hexadecahydro-4,14-dimethyl- 
1H-8-oxacyclododeca [b] as-indacene-7,15-
dione. 
 
Chlorfluazuron: 1-[3,5-dichloro-4-(3-chloro-5-
trifluoromethyl-2-pyridyloxy) phenyl] -3-(2, 6-
difluorobenzoyl) urea. 
 
The trade name, formulation, producing 
company, insecticide class and recommended 
field rate of the tested insecticides were 
presented in Table 1. 
 
2.2 Honeybee Workers 
 
Apis mellifera L. workers of one day age were 
obtained from hives maintained in an apiary at 
the experimental farm of the Faculty of 
Agriculture, Benha University, Egypt. They were 
then placed in the laboratory refrigerator at 4oC 
for approximately 10 min to slow bee movement. 
Then they were transferred to wooden three-hole 
Benton cages, with 5 bees per cage.  
 
2.3 Bioassay 
 
Bees were deprived of food for 4 h prior to 
insecticide exposure. Bee workers were fed on 
candy [(4 powdered sugar: 1 honey) - 40 g /cage] 
which contained 1 mL of insecticide water 
solution (stock solutions) to give the required 
concentration level (in case of control treatment 
only 1 mL of water was added). The 
experimental cages of each insecticide were 
divided into 7 concentrations, 1F×10-1, 5F×10-2, 

1F×10-2, 5F×10-3, 1F×10-3, 5F×10-4 and 1F×10-4, 
where F was the recommended field rate of the 
applied insecticides. Each concentration and an 
untreated control consisted of five repetitions. 
Bee cages were held in an incubator (24 h 
darkness; 32±2ºC; 70% RH) [31].  Mortality was 
recorded after 1, 2, 3, 5, 7, 10 and 15 days of the 
experiment. 
 
2.4 Statistical Analysis 
 
A probit computer program was used to 
determine the lethal times for the insecticides 
[32,33]. A significant difference between LT50 
values (the time required for 50% of the insects 
to die following exposure to a level concentration 
of the test insecticide) was based on overlap of 
95% confidence intervals [34]. 
 
3. RESULTS AND DISCUSSION 
 
The results of Table 2 show, at the highest 
concentration tested (1F×10-1), dinotefuran 
(neonicotinoid) and methomyl (carbamate) were 
the most toxic to honeybee workers that gave 
100% mortality after one day exposure time, 
followed by profenofos (organophosphate) which 
had the least lethal times, LT15, LT50 and LT95 of 
1.0, 1.9 and 4.9 days, respectively, whereas 
spinosad (bioinsecticide) gave the longest lethal 
time (LT95), 23.7 days. Lethal times (LT95s) of 
both azadirachtin (botanical-bioinsecticide) and 
chlorfluazuron (IGR) were longer than profenofos 
and at same time, shorter than spinosad. At 
concentration of (5F×10-2), dinotefuran is still the 
most toxic and gave 100% of bee mortality after 
one day exposure time. Methomyl, profenofos

 
Table 1. The trade name, formulation, producing company, insecticide class and 

recommended field rate of the tested insecticides 
 

Insecticide Producing  
company 

Insecticide class Recommended 
field rate (F) 
ug (a.i) mL-1 

Dinotefuran 
(Oshin 20% SG ) 

Sumitomo Chemical 
Co., Japan. 

Neonicotinoid 250.0 

Methomyl 
(Lannate 90% WSP) 

E. I. du Pont de 
Nemours, USA. 

Carbamate 1350.0 

Profenofos (Selecron 
72% EC) 

Syngenta chemical Co. 
AG, Switzerland. 

Organophosphate 1353.6 

Azadirachtin 
(Achook 0.15% EC) 

Bahar Agrochem. and 
Foods Pvt. Ltd., India. 

Bioinsecticide (botanical) 562.5×10-2 

Spinosad 
(Tracer 24% SC) 

Dow AgroSciences 
Co., India. 
 

Bioinsecticide 
(an extract of the fermentation broth of 
soil actinomycete bacterium, 
Saccharopolyspora spinosa) 

60.0 

Chlorfluazuron (Topron 
5% EC) 

Agrochem. Co., Egypt. Benzoyl phenyl urea  (IGR) 100.0 
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Table 2. The lethal times of tested insecticides to the honeybee workers at 7 concentrations as 
ratios of the field recommendation rate 

 
Insecticide Concentration Lethal times and their 95% confidence limits 

Field 
recommendation 
rate (F) 

ug (a.i.) mL-1 
(Days) 

LT15 LT50 LT95 
Dinotefuran  25.0 NC1 NC1 NC1 
Methomyl  135.0 NC1 NC1 NC1 
Profenofos  1353.6×10-1 1.0(0.9-1.2)a 1.9(1.7-2.1)a 4.9(4.3-5.8)a 

Azadirachtin 1F×10-1 562.5×10-3 2.3(1.9-2.6)b 3.7(3.4-4.1)b 8.2(7.4-9.6)b 

Spinosad  6.0 2.0(1.8-3.0)b 5.2(3.6-7.6)bc 23.7(13.6-37.4)c 

Chlorfluazuron  10.0 4.7(4.2-5.0)c 6.3(6.0-6.6)c 10.2(9.4-11.5)b 

Dinotefuran  
 
5F×10-2 

12.5 NC1 NC1 NC1 
Methomyl 67.5 1.2(0.1-2.3)a 2.5(0.6-3.5)a 7.3(6.2-11.2)a 

Profenofos 676.8×10-1 2.3(1.9-2.7)ab 3.8(3.5-4.1)a 8.2(7.2-10.0)a 

Azadirachtin 2812.5×10-4 4.2(3.7-4.6)c 5.6(5.3-5.9)b 8.8(7.9-10.5)a 

Spinosad 3.0 3.0(2.5-3.6)b 10.1(6.1-14.7)c 67.0(53.4-75.9)c 

Chlorfluazuron 5.0 4.7(4.0-5.1)c 7.1(6.7-7.6)c 14.0(12.2-17.6)b 
Dinotefuran  

 
1F×10-2 

2.5 3.2(2.4-3.8)a 4.4(3.8-4.8)a 7.2(6.6-8.4)a 

Methomyl 13.5 3.8(2.4-4.9)abc 7.5(6.3-8.3)b 21.4(17.2-32.2)c 

Profenofos 1353.6×10-2 4.2(3.4-4.9)abc 7.6(7.1-8.1)b 12.2(11.2-13.9)b 

Azadirachtin 562.5×10-5 4.5(3.9-4.8)bc 5.9(5.6-6.2)c 9.3(8.4-11.3)ab 

Spinosad 0.6 3.5(1.9-4.6)ab 15.3(11.0-25.0)d 160.6(116.5-239.4)d 

Chlorfluazuron 1.0 5.6(4.7-6.3)c 10(9.0-11.8)d 24.8(18.3-44.0)c 

Dinotefuran  
 
5F×10-3 

12.5×10-1 3.4(2.5-4.0)a 4.9(4.3-5.2)a 8.4(7.5-10.6)a 

Methomyl 67.5×10-1 4.8(3.9-5.6)abc 10.5(9.5-11.9)d 36.2(27.0-58.6)d 

Profenofos 676.8×10-2 4.8(4.2-5.4)b 8.0(7.1-8.9)c 17.3(15.3-20.5)bc 

Azadirachtin 2812.5×10-5 4.8(4.2-5.1)b 6.5(6.1-6.9)b 10.0(9.3-12.9)a 

Spinosad 0.3 4.6(2.5-6.0)bc 19.6(14.5-39.6)e 193.9(173.0-243.9)e 

Chlorfluazuron 0.5 6.3(5.6-6.8)c 9.8(9.0-11.0)d 19.7(16.0-28.3)cd 

Dinotefuran  
 
1F×10-3 

2.5×10-1 4.1(3.5-4.5)a 5.8(5.4-6.3)a 10.4(9.3-12.1)a 

Methomyl 13.5×10-1 5.5(3.9-6.7)ab 14.3(12.2-18.3)c 64.8(39.9-88.5)c 

Profenofos 1353.6×10-3 5.4(4.6-6.0)bc 8.4(7.8-9.1)b 22.5(18.9-28.7)b 

Azadirachtin 562.5×10-5 5.1(4.7-5.5)b 6.7(6.3-7.2)a 10.4(9.5-11.7)a 

Spinosad 0.6×10-1 NC2 NC2 NC2 
Chlorfluazuron 0.1 7.0(6.0-7.8)c 13.3(11.1-20.0)c 37.4(23.5-62.0)c 

Dinotefuran  
 
5F×10-4 

12.5×10-2 4.3(3.8-4.8)a 6.4(5.9-6.9)a 11.7(10.6-13.5)a 

Methomyl 67.5×10-2 5.8(3.8-7.1)abc 17.4(14.1-26.5)d 101.4(82.0-128.5)c 

Profenofos 676.8×10-3 5.7(4.9-6.2)b 9.2(8.5-10.0)b 25.4(21.1-32.6)b 

Azadirachtin 2812.5×10-6 7.1(6.7-7.4)c 8.4(8.1-8.7)b 10.9(10.4-11.8)a 

Spinosad 0.3×10-1 NC2 NC2 NC2 
Chlorfluazuron 0.5×10-1 7.7(7.1-8.3)c 11.6(10.4-13.8)c 21.8(17.1-34.7)b 
Dinotefuran  

 
1F×10-4 

2.5×10-2 4.7(3.8-5.3)a 10.3(8.2-17.5)ab 36.4(20.2-57.0)b 

Methomyl 13.5×10-2 6.2(4.4-7.9)ab 32.6(20.7-57.8)c 255.7(210.6-313.0)c 

Profenofos 1353.6×10-4 5.9(4.0-7.4)ab 16.1(13.2-22.4)bc 78.1(44.6-92.6)b 

Azadirachtin 562.5×10-6 7.1(6.7-7.4)b 8.6(8.3-8.9)a 11.6(10.9-12.7)a 

Spinosad 0.6×10-2 NC2 NC2 NC2 
Chlorfluazuron 0.1×10-1 10.1(8.8-13.5)c 17.9(13.4-45.1)bc 44.4(24.4-66.6)b 

NC1: Not calculated where the mortality of honey bees was 100% at tested days 
NC2: Not calculated where the mortality of honey bees was zero at tested days 

Different lowercase letters within each column of each concentration indicate significant differences (p < 0.05) 
 
and azadirachtin gave the least lethal times 
(LT95s), 7.3, 8.2 and 8.8 days, respectively. Also, 
spinosad gave the longest lethal time (LT95), 67.0 
days. Although, the lethal time (LT95) of 
chlorfluazuron was longer than methomyl, 
profenofos and azadirachtin, it was shorter than 
spinosad. In general data confirmed that 
dinotefuran gave the significant shortest lethal 
times (LT50s), 4.4, 4.9, 5.8 and 6.4 days at the 

concentrations 1F×10-2, 5F×10-3, 1F×10-3 and 
5F×10-4, respectively. At the lowest concentration 
of (1F×10-4), lethal time (LT95) of azadirachtin 
became significantly the shortest (11.6 days) in 
comparison to the other insecticides tested. 
However, toxicity of methomyl and profenofos 
decreased by the decrease in the concentrations 
to the lowest one (1F×10-4). Their lethal times 
(LT95s) increased to 255.7 and 78.1 days in 
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comparison to dinotefuran and azadirachtin 
insecticides, respectively. On the other hand, the 
three lowest concentrations of spinosad, 1F×10-3, 
5F×10-4 and 1F×10-4, gave no bee mortality, 
when bees  were fed for 15 days on each of 
them. Moreover, when spinosad was tested at 
the higher remained concentrations, it gave the 
significant longest lethal times of LT50s and LT95s. 
 
In general, research results revealed that all 
tested insecticides had moderate or high risks to 
honeybee workers. The toxicity order of the 
tested insecticides significantly varied as follows, 
dinotefuran > methomyl > profenofos > 
azadirachtin > chlorfluazuron > spinosad. A risk 
of neonicotinoids on bees is not only because of 
their high toxicity but also due to their specific 
mode of action, result in killing the honey bees if 
they are exposed to the pesticide residues for a 
long time, they are more toxic and persist than 
the majority of organophosphorus, carbamates 
and pyrethroids [16,18,19,20,21]. The sub-lethal 
concentrations caused the mortality of honey 
bees (A. mellifera L.). This well explained that the 
time of exposure may strongly the mortality effect 
[25,26]. This fact gives evidence of the hazard 
caused by neonicoitoids to honey bees, since 
very small concentrations may involve a 
significant impact on mortality. Previous studies 
showed the toxicity of the insecticides to 
honeybee workers of A. mellifera was higher with 
the increase in the exposure period of the 
insecticides, through the contaminated diets. For 
example, bee ingested sub-lethal concentrations 
of imidacloprid for 10 days or 40 days, might 
cause a high mortality, ranging from 50 to 100%. 
Moreover, several neonicotinoids show very 
strong toxicity to bee insects [7,12,13,14,15,17]. 
On the other hand, the results indicated the 
toxicity of azadirachtin (the botanical insecticide) 
to A. mellifera may have a strong mortality 
effects. It can be achieved with an increase in the 
exposure time. The present results indicated that 
by decreasing the concentration of the tested 
insecticides to the lowest concentration, their 
toxicity order significantly changed as follows, 
azadirachtin > dinotefuran > profenofos > 
chlorfluazuron > methomyl > spinosad. 
Regarding the effect of azadirachtin, negative 
effects of neem on adult honey bees were 
observed [35]. They also reported that this 
insecticide decreased the amount of larvae in 
colonies. As well as a significant increase in the 
mortality of adult workers of A. mellifera with an 
increase exposure time of the bees to different 
concentrations of neem oil was reported [27].  It 
was also observed that the botanical insecticides 

had the potential acute toxicity and sub-lethal 
impacts on honey bees and, herewith, it gives 
evidence of the importance of evaluating the 
risks of the side effects of biopesticides. The 
effects of botanical pesticides were noted, which 
had been formerly described as “safe” to honey 
bees [24]. These insecticides led to toxicity to 
honeybee workers of A. mellifera, which 
indicates that their use should be avoided 
through the flowering period in crops when the 
plants are visited by bees. On the other hand, it 
was found that the exposure of honeybee 
workers to spinosad treated foliage under 
laboratory conditions did not result in the 
increase mortality, indicating that the intrinsic 
toxicity of spinosad was observed in acute tests 
of toxicity. It was not seen under conditions of 
more realistic exposure [36]. Consequently, to 
protect A. mellifera population, it is needed to 
minimize the bee exposure to highly toxic 
insecticides, which can be realized through the 
application of insecticides using the basics of 
ecological selectivity [37]. The insecticide should 
be used when the honey bees have lower 
foraging rates for the crops (i.e., late afternoon) 

[38]. Another practice that can reduce the effect 
of the insecticides is the closure of the hive 
opening and the use of artificial feeding on days 
when pesticides are applied to prevent the 
contact of bees with the toxicants [23].  
 
4. CONCLUSION 
 
Under the light of the research findings,                      
the insecticide toxicity to bees was great           
varied by the interaction among a time exposure, 
a concentration and an insecticide chemical 
class. Dinotefuran (neonicotinoid) followed          
by azadirachtin (botanical-bioinsecticide), 
profenofos (organophosphate) and methomyl 
(carbamate) had the harmful effect on bee while 
spinosad was comparatively less toxic followed 
by chlorfluazuron (IGR) and can be applied to 
crops. 
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