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Abstract
This paper is concerned with the local and global asymptotic behavior of positive solution for a
system of three order rational difference equations

xn+1 =
xn

α+ xn−1yn−1
, yn+1 =

yn
β + xn−1yn−1

n = 0, 1, · · · ,

where α, β ∈ (0,∞), and the initial values x−1, x0 ∈ (0,∞), y−1, y0 ∈ (0,∞). Finally, some
numerical examples are provided to illustrate theoretical results obtained.
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1 INTRODUCTION

Difference equations or discrete dynamical
systems are diverse fields which impact almost
every branch of pure and applied mathematics.
Every dynamical system xn+1 = f(xn, xn−1)
determines a difference equation and vise
versa. Recently, there has been great
interest in studying difference equations systems.
One of the reasons for this is a necessity
for some techniques which can be used in
investigating equations arising in mathematical
models describing real life situations such as
population biology [1, 2], economic, probability
theory, genetics, psychology, etc. In particular,
rational difference equations have appealed more
and more scholars due to their wide application.
For detail, see [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24].

Kurbanli [3] studied a three-dimensional system
of rational difference equations

xn+1 =
xn−1

ynxn−1 − 1
, yn+1 =

yn−1

xnyn−1 − 1
,

zn+1 =
zn−1

ynzn−1 − 1
,

where the initial conditions are arbitrary real
numbers.

Cinar et al. [4] has obtained the positive solution
of the difference equation system

xn+1 =
m

y n

, yn+1 =
pyn

xn−1yn−1
.

Cinar [5] has obtained the positive solution of the
difference equation system

xn+1 =
1

y n

, yn+1 =
yn

xn−1yn−1
.

Also, Cinar [6] has obtained the positive solution
of the difference equation system

xn+1 =
1

zn
, yn+1 =

xn

xn−1
, zn+1 =

1

xn−1
.

Ozban [7] has investigated the positive solutions
of the system of rational difference equations

xn+1 =
1

yn−k
, yn+1 =

yn
xn−myn−m+k

.

Papaschinopoulos et al. [8] investigated the
global behavior for a system of the following two
nonlinear difference equations.

xn+1 = A+
yn

xn−p
,

yn+1 = A+
xn

yn−q
, n = 0, 1, · · · ,

where A is a positive real number, p, q are
positive integers, and x−p, · · · , x0, y−q, · · · , y0
are positive real numbers.

In 2012, Zhang, Yang and Liu [9] investigated the
global behavior for a system of the following third
order nonlinear difference equations.

xn+1 =
xn−2

B + yn−2yn−1yn
, yn+1 =

yn−2

A+ xn−2xn−1xn
,

where A,B ∈ (0,∞), and the initial values
x−i, y−i ∈ (0,∞), i = 0, 1, 2.

Although difference equations are sometimes
very simple in their forms, they are extremely
difficult to understand thoroughly the behavior of
their solutions. In book [25] Kocic and Ladas have
studied global behavior of nonlinear difference
equations of higher order. Similar nonlinear
systems of rational difference equations were
investigated (see [26]). Other related results
reader can refer [10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24].

Motivated by above discussion, our goal, in
this paper is to investigate the solutions of the
two-dimensional system of three order rational
nonlinear difference equations in the form

xn+1 =
xn

α+ xn−1yn−1
,

yn+1 =
yn

β + xn−1yn−1
, n = 0, 1, · · · . (1.1)

where α, β ∈ (0,∞) and the initial values
x−1, x0, y−1 and y0 ∈ (0,∞). Moreover, we
have studied the local stability, global stability,
boundedness of solutions. We will consider some
special cases of (1.1) as applications. Finally, we
give some numerical examples.
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2 MAIN RESULTS

Let Ix, Iy be some intervals of real number and
f : I2x×I2y → Ix, g : I2x×I2y → Iy be continuously
differentiable functions. Then for every initial
conditions (xi, yi) ∈ Ix × Iy(i = −1, 0), the
system of difference equations

xn+1 = f(xn, xn−1, yn, yn−1),

yn+1 = g(xn, xn−1, yn, yn−1),
n = 0, 1, 2, · · · ,

(2.1)

has a unique solution {(xn, yn)}∞n=−1. A point
(x̄, ȳ) ∈ Ix × Iy is called an equilibrium point of
(2.1) if x̄ = f(x̄, x̄, ȳ, ȳ), ȳ = g(x̄, x̄, ȳ, ȳ), i. e.,
(xn, yn) = (x̄, ȳ) for all n ≥ 0.

Definition 2.1. Assume that (x̄, ȳ) be a fixed
point of (2.1). Then

(i) (x̄, ȳ) is said to be stable relative to Ix × Iy if
for every ε > 0, there exists δ > 0 such that for
any initial conditions (xi, yi) ∈ Ix × Iy(i = −1, 0),
with

∑0
i=−1 |xi − x̄| < δ,

∑0
i=−1 |yi − ȳ| < δ,

implies |xn − x̄| < ε, |yn − ȳ| < ε.

(ii) (x̄, ȳ) is called an attractor relative to Ix×Iy if
for all (xi, yi) ∈ Ix × Iy(i = −1, 0), limn→∞ xn =
x̄, limn→∞ yn = ȳ.

(iii) (x̄, ȳ) is called asymptotically stable relative
to Ix × Iy if it is stable and an attractor.
(iv) Unstable if it is not stable.

Theorem 2.1. [25] Assume that X(n + 1) =
F (X(n)), n = 0, 1, · · · , is a system of difference
equations and X is the equilibrium point of this
system i.e., F (X) = X. If all eigenvalues of
the Jacobian matrix JF , evaluated at X lie inside
the open unit disk |λ| < 1, then X is locally
asymptotically stable. If one of them has modulus
greater than one, then X is unstable.

Theorem 2.2. Assume that α < 1, β < 1. Then
the following statements are true.
(i) The equilibrium (0, 0) is locally unstable.
(ii) If α = β, then the system has infinite positive
equilibrium points (x̄, ȳ) such that x̄ȳ = 1 − α
which are locally unstable.

Proof. (i) We can easily obtain that the linearized
system of (1.1) about the equilibrium (0, 0) is

Φn+1 = DΦn, (2.2)

where Φn = (xn, xn−1, yn, yn−1)
T ,

D = (dij)4×4 =


1
α

0 0 0
1 0 0 0
0 0 1

β
0

0 0 1 0

 (2.3)

The characteristic equation of (2.2) is

f(λ) = λ2

(
λ− 1

α

)(
λ− 1

β

)
= 0. (2.4)

This shows that the roots of characteristic
equation λ = 1

α
and λ = 1

β
lie outside unit

disk. So the unique equilibrium (0, 0) is locally
unstable.
(ii) If α = β, We can easily obtain that system
(1.1) has infinite positive equilibrium points (x̄, ȳ)
such that x̄ȳ = 1 − α. The linearized system
about equilibrium point (x̄, ȳ) of system (1.1) is

Φn+1 = GΦn, (2.5)

where Φn = (xn, xn−1, yn, yn−1)
T ,

G =


1 α− 1 0 −x̄2

1 0 0 0
0 −ȳ2 1 β − 1
0 0 1 0

 .

Let λ1, λ2, λ3, λ4 denote the 4 eigenvalues of
Matrix G. Let D = diag(d1, d2, d3, d4), di ̸= 0(i =
1, 2, 3, 4) be a diagonal matrix,

Clearly D is invertible. Computing DGD−1, we
obtained

DGD−1 =


1 d1

d2
(α− 1) 0 − d4

d1
x̄2

d2
d1

0 0 0

0 − d3
d2
ȳ2 1 d3

d4
(β − 1)

0 0 d4
d3

0


It is well known that G has the same eigenvalues
as DGD−1, we obtain that

max
1≤k≤4

|λk| = ∥DGD−1∥

= max

{
d2d

−1
1 , d4d

−1
3 , 1 +

d1
d2

(1− α) +
d4
d1

x̄2,

1 +
d3
d4

(1− β) +
d3
d2

ȳ2

}
> 1

It follows from Theorem 2.1 [25] that the positive
equilibrium points (x̄, ȳ) is locally unstable.
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Theorem 2.3. Assume that α > 1, β > 1. Then
the equilibrium (0, 0) is globally asymptotically
stable.

Proof. For α > 1, β > 1, from (i) of Theorem
2.2, the equilibrium (0, 0) is locally asymptotically
stable. From (1.1), it is easy to see that every
positive solution (xn, yn) is bounded, i. e., 0 ≤
xn ≤ x0, 0 ≤ yn ≤ y0. Now, it is sufficient to
prove that(xn, yn) is decreasing. From (1.1), we
have

xn+1

xn
=

1

α+ xn−1yn−1
≤ 1

α
< 1,

yn+1

yn
=

1

β + xn−1yn−1
≤ 1

β
< 1.

This implies that the sequences {xn} and
{yn} are decreasing. Hence, limn→∞ xn =
0, limn→∞ yn = 0. Therefore, the equilibrium
(0, 0) is globally asymptotically stable.

Theorem 2.4. Assume that α = β = 1. Then the
following statements are true

(i) the system (1.1) exist infinite equilibrium points
(0, y) and (x, 0)
(ii) every positive solution (xn, yn) of (1.1)
converges (0, 0).

Proof. (1) For α = β = 1, we consider the
following system

x =
x

1 + xy
, y =

y

1 + xy
(2.6)

It is clear to see that the system (2.6) has infinite
equilibrium points (0, y) and (x, 0).

(ii) Since the initial values x0, x−1, y0, y−1 are
positive real number. It is similar to the proof
of Theorem 2.3. we can easily get the positive
solution (xn, yn) converges the equilibrium (0, 0).

3 RATE OF CONVERGENCE

In order to study the rate of convergence of
positive solutions of (1.1) which converge to
equilibrium point (0, 0) of this system, first we
consider the following results that gives the rate of
convergence of solution of a system of difference
equations.

Xn+1 = [A+B(n)]Xn, (3.1)

where Xn is m dimensional vector, A ∈ Cm×m is
a constant matrix. B : Z+ → Cm×m is a matrix
function satisfying

∥B(n)∥ → 0, (3.2)

as n → ∞, where ∥ · ∥ is any matrix norm which
is associated with the vector norm

∥(x, y)∥ =
√

x2 + y2.

Proposition 3.1. (Perrons Theorem)[27]
Suppose that condition (3.2) holds. If Xn is any
solution of (3.1), then Xn = 0 for all large n or

ρ = lim
n→∞

∥Xn+1∥
∥Xn∥

(3.3)

exists and is equal to the modulus of one of the
eigenvalues of matrix A.

Proposition 3.2. [27] Suppose that condition
(3.2) holds. If Xn is any solution of (3.1), then
Xn = 0 for all large n or

ρ = lim
n→∞

n
√

∥Xn+1∥ (3.4)

exists and is equal to the modulus of one of the
eigenvalues of matrix A.

Let(xn, yn) be an arbitrary positive solution
of system (1.1) such that limn→∞ xn =
0, limn→∞ yn = 0. It follows from (1.1) that

xn+1 − 0 =
xn

α+ xn−1yn−1
=

1

α+ xn−1yn−1
xn

and

yn+1 − 0 =
yn

β + xn−1yn−1
=

1

β + xn−1yn−1
yn

Let E1
n = xn − 0, E2

n = yn − 0, then we have

E1
n+1 = AnE

1
n+BnE

2
n, E2

n+1 = CnE
1
n+DnE

2
n.

where

An =
1

α+ xn−1yn−1
, Bn = 0, Cn = 0,

Dn =
1

β + xn−1yn−1
.

Moreover

lim
n→∞

An =
1

α
, lim

n→∞
Dn =

1

β
.
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Now the limiting system of error terms can be
written as(

E1
n+1

E2
n+1

)
=

(
1/α 0
0 1/β

)(
E1

n

E2
n

)
,

which is similar to linearized system of (1.1) about
the equilibrium point (0, 0).

Using Proposition 3.1 and Proposition 3.2, we
have following result.

Theorem 3.1. Assume that (xn, yn) be a
positive solution of (1.1) such that limn→∞ xn =
0, limn→∞ yn = 0, then the error vector En =
(E1

n, E
2
n)

T of every solution of (1.1) satisfies the
following asymptotic relations

lim
n→∞

n
√

∥En∥ = |λ1,2FJ(0, 0)|,

lim
n→∞

∥En+1∥
∥En∥

= |λ1,2FJ(0, 0)|,

where λ1,2FJ(0, 0) = 1
α

or 1
β

are the
characteristic of Jacobian matrix FJ(0, 0).

4 NUMERICAL EXAMPLES

In order to illustrate the results of the
previous sections and to support our theoretical
discussions, some interesting numerical
examples are considered in this section. These
examples represent different types of qualitative
behavior of solutions to the system of nonlinear
difference equations.

Example 4.1. If the initial conditions x0 =
0.7, x−1 = 0.8, y0 = 0.9, y−1 = 0.5, and α =
1.4, β = 1.2, we have the following system

xn+1 =
xn

1.4 + xn−1yn−1
, yn+1 =

yn
1.2 + xn−1yn−1

.

It is clear that α > 1, β > 1. Then the equilibrium
(0, 0) is globally asymptotically stable.(Using
MATLAB software, See Theorem 2.3 , Fig. 1)

Example 4.2. If the initial conditions x0 =
9.8, x−1 = 7.2, y0 = 9.6, y−1 = 6.2, and α =
0.8, β = 0.7, we have the following system

xn+1 =
xn

0.8 + xn−1yn−1
, yn+1 =

yn
0.7 + xn−1yn−1

.

It is clear that α < 1, β < 1. Then equilibrium
(0, 0) and (x̄, ȳ) are unstable.(Using MATLAB
software, see Theorem 2.2, Fig. 2)
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Fig. 1. The fixed point (0,0) is globally
asymptotically stable
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Fig. 2. The fixed point (0,0) and (x̄, ȳ) is
unstable
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Fig. 3. the positive solution (xn, yn) of
system (1.1) converges the equilibrium (0, 0).

Example 4.3. If the initial conditions x0 =
0.7, x−1 = 0.8, y0 = 0.6, y−1 = 0.3, and α = β =
1, we have the following system

xn+1 =
xn

1 + xn−1yn−1
, yn+1 =

yn
1 + xn−1yn−1

.
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It is clear that α = β = 1. Then the positive
solution (xn, yn) of system (1.1) converges the
equilibrium (0, 0). (Using MATLAB software, see
Theorem 2.4, Fig. 3)

5 CONCLUSION

This paper is concerned with the behavior of
positive solution to system (1.1) under some
conditions. The results obtained are as follows:

(i) If α > 1 and β > 1, the system (1.1)
has an unique equilibrium (0, 0) which is globally
asymptotically stable. (ii) If α < 1 and β < 1,
then system (1.1) has equilibrium (0, 0) which is
unstable. Furthermore if α = β < 1, then system
has infinite positive equilibrium (x̄, ȳ) such that
x̄ȳ = 1 − α which are locally unstable. (iii) If
α = β = 1, system (1.1) has infinite equilibrium
point (0, y) and (x, 0) and every positive solution
(xn, yn) converges equilibrium point (0, 0).
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