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ABSTRACT 
 

Aims: To estimate the surface CO2 flux derived from CO2 concentration profiles and to validate the 
results by previous data of surface CO2 flux obtained from the measurements using close-chamber 
method. 
Study Design: The measurement of soil CO2 concentration profile, soil properties, and soil 
temperature was carried out to estimate surface CO2 flux using the derived model of mass balance 
equation. The results were subsequently compared with measurements of surface CO2 flux using 
close-chamber method. 
Place and Duration of Study: INAS field located in Ito Campus of Kyushu University (Japan) from 
November 2015 to March 2016.  
Methodology: CO2 gas was sampled in four different depths to analyze its concentration within the 
soil layer. Soil temperature was monitored throughout the measurement and soil properties such 
as density, porosity and moisture content were measured as well to estimate the diffusion rate. 
Derived from mass balance equation, the surface CO2 flux was estimated. It was validated using 
the previous measurement data of surface CO2 flux using close-chamber method that had been 
conducted formerly at the same location.  
Results: A total of seven measurements of soil CO2 concentration profile showed that the CO2 
concentration increased with soil depth and it was fitted with logarithmic trend (R

2
 = 0.981 in 

average). A range of CO2 concentration values was measured at each depth, i.e., 1300 to 8700 
ppm at 0.1 m depth; 2500 to 10800 ppm at 0.2 m depth; 4200 to 13200 ppm at 0.3 m depth; and 
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5800 to 16500 ppm at 1.0 m depth. High CO2 concentration in 0.1 m soil depth indicated high 
surface CO2 flux. 
Conclusions: Soil CO2 concentration in INAS field increased following a logarithmic trend. Based 
upon this trend, an equation to estimate the surface CO2 flux was proposed using derived model 
from mass balance equation and gas diffusion model. The estimated surface CO2 flux was 
compared and showed a good agreement with measured one. The equation presented herein is 
potentially suitable to estimate the surface CO2 flux. 

 

Keywords: CO2 concentration profile; logarithmic trend; surface CO2 flux; close-chamber method; 
INAS field. 

 

1. INTRODUCTION 
 
Carbon dioxide (CO2) emission from soils is one 
of the important parameters contribute to the 
carbon cycle on the Earth because soil is the 
biggest carbon pool in terrestrial land [1]. It 
contributes around three-quarters of the CO2 
total ecosystem respiration [2]. Emitted CO2 can 
be estimated by measuring its flux on the soil 
surface or in this paper defined as surface CO2 
flux. CO2 flux from the soil is determined by two 
major processes [3] including the generation of 
CO2 within the soil, and its transport in the soil 
and the emission to the atmosphere. The source 
of the soil CO2 production is primarily originated 
from root respiration, decomposition of organic 
matter, atmospheric infiltration, magmatic 
degassing, or the metamorphosis or dissolution 
of carbonate [4]. On the other hand, its transport 
to the surface is controlled by several factors 
such as physical properties of the transport 
media (soil), climate conditions (temperature, 
rainfall, wind speed, etc), and many other factors. 
Nevertheless, both the soil temperature and soil 
water content are reported to be the key factors 
acting upon surface CO2 flux [3,5]. The former 
parameter is the interest of this work. 
 

Some studies have shown that soil CO2 
concentration increases with depth [7-10]. Turcu 
et al. (2005) carried out a laboratory experiment 
and showed that the CO2 concentration 
increased linearly with depth. Tang et al. (2003) 
continuously measured the CO2 gas 
concentration at an oak-grass savanna and 
found that it linearly increased with the depth, up 
to 16 cm. An experimental study of snowpack by 
also showed the same trend [11]. In this case, 
the concentration profile increased linearly up to 
1.0-m depth. Davidson et al. (2006) showed that 
CO2 gas concentration exponentially increased 
with depth, having varying trends, depending on 
seasonally sensitive parameters such as soil 
temperature and moisture content [12]. The 
different fitting trends observed in the soil gas 
concentrations with depth affects the governed 
models used to estimate the surface CO2 flux. 

Therefore, in this work, we measured soil CO2 
concentration profiles in order to estimate 
surface CO2 flux using derived model based on 
mass balance equation. 
 

2. STUDY LOCATION AND MEASURE-
MENT METHODS 

 

2.1 Field Location 
 
The field measurements of CO2 concentration 
profiles were carried out at INAS test field (Fig. 
1). This is located on the west side of the Ito 
Campus of Kyushu University. It has an altitude 
of 74 m above sea level. It is currently covered 
by grass, having no trees around. The soil layer 
is up to 3.0 m thick [13]. 
 

The official website of the Japan Meteorological 
Agency (JMA) provides historical weather data. 
Weather data from 2000 to 2016 show that the 
annual mean temperature was 17.4°C, while the 
maximum and minimum monthly temperatures 
were around 32.6°C in August and 3.7°C in 
January, respectively. The monthly average 
temperature in 2015 ranged from 7.6°C in 
February to 27.4°C in August with an annual 
mean temperature of 17.3°C. Fig. 2 shows that 
the daily maximum and minimum temperatures 
measured during the eight days undertaken 
during this study, as well their values recorded at 
the Fukuoka Station (World Meteorological 
Observation Station ID:47807; 33°34’9”N, 
130°22’5”E). The highest and lowest monthly 
precipitation amounts were 319.5 mm in August 
and 42.5 mm in February, respectively. Total 
precipitation was 1867.5 mm year-1 throughout 
the year, including slight snowfall.  
 

At the INAS test field, two boreholes of 113 m 
and 100.5 m in depth were drilled in 2010, as 
well as three holes of 19.5 m in depth to monitor 
CO2 release [14]. The soil CO2 concentration 
ranged from around 400 ppm at the surface to 
thousands of ppm in the shallow soil layer. The 
location selected for monitoring in this study was 
about 2 m in the distance from the 100.5-m wells. 
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Fig. 1. Location of INAS field. (a) a map showing the context of the INAS field location on 
Kyushu Island, Japan; (b) location of the INAS field on Ito Campus of Kyushu University (red 
circle); (c) field condition and boreholes location at the INAS field (red circle); and (d) image 

showing CO2 sampling using an air pump and gas bag 
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Fig. 2. Seven days of field measurements of CO2 concentration profiles at the INAS test field, 

along with daily maximum and minimum temperature 

 
2.2 Field Measurement of Soil CO2 

Concentration Profile 
 

Soil CO2 gas concentration and its flux are 
required to quantify CO2 emissions from the 
ground surface to the atmosphere. CO2 

concentration profiles in the soil were measured 
at the INAS test field. A borehole, 10 cm in 
diameter was drilled to carry out the 
measurements of the soil CO2. A vertical casing 
pipe was fitted within the well and four vinyl 
tubes, 10 mm in diameter, were connected to the 
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sampling holes, perpendicular to the inner wall of 
the pipe at depths of 0.1, 0.2, 0.3 and 1.0 m from 
the surface (Fig. 3). Soil gases were sampled 
into a 1.0 l gas bag at these four levels using an 
air pump having a low suction speed of less than 
1 cc s

-1
 to prevent convection flow within the soil. 

The soil gases were analyzed in the laboratory 
using a CO2 gas analyzer (LI-840A; Li-Cor, 
Lincoln, NE, USA). In this study, we assumed 
that the CO2 concentration from the gas bag was 
treated as the average value of soil gas at each 
depth. 
 
2.3 Models of Surface CO2 Flux and CO2 

Diffusion Coefficient of the Soil  
 
CO2 concentration in a given soil layer is 
dependent the mass balance between the CO2 
produced within the layer and the CO2 diffused 
into it from other layers. If we assume Cs (mol m

-

3) is the soil CO2 gas concentration at time t (h) 
and depth z (m), S (mol m

-3
 h

-1
) is the CO2 

production in the soil and F (mol m-2 h-1) is the 
soil CO2 flux, then a 1-dimensional CO2 mass 
balance can be expressed as Eq. (1). 
 

 
( )s

FC
S z

t z

z
 

 
 (1) 

 

where sC

t




 is the unsteady term for CO2 

concentration in the soil. In this study, a steady 
state situation was assumed. Soil depth (z) is 
defined as positive, in a downward from the 
surface. 
 

  2

2
s

s

F z C
D

z z

 
 

 
 (2) 

 
Ds (m

2 h-1) is the gas diffusion coefficient in the 
soil, which is a function of the soil properties, and 
is expressed in terms of the effective gas 
diffusion coefficient,  (-), given in Eq. (3), and its 
variation with temperature and pressure, as 
defined in Eq. (4) [15]. 
 

s a
D D  (3) 
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 (4) 

 

Thus, Da (m2.h-1) is the diffusion coefficient in 
free air and Da0 is the value under standard 

conditions, 5.004 ẋ 10
-2

 m
2
 h

-1
 for CO2 at 

standard temperature and pressure (T0 = 273.15 
K; P0 = 101.3kPa). Ts (K) is soil temperature, 
while P is assumed to be equivalent to P0, until 1 
m soil depth. 
 

The CO2 diffusion coefficient is one of the major 
parameters used to estimate the gas flux in the 
soil. It is determined by the physical properties of 
the soil, such as its dry density, porosity, water-
filled porosity and gas-filled porosity. In this 
study, we estimated the diffusion coefficient 
using Moldrup et al., (1997), as written below. 
This model of diffusion rate was the best fitted 
with measurement results compared to other 
models [16]. 
 

 

12 *

3

0.66  

m

 
  






 

 
 
 

 (5) 

*m = 3 for undisturbed soil and m = 6 for disturbed soil 
 

where  (m
3
 m

-3
) is soil porosity and  (m

3
 m

-3
) is 

the volumetric water content.  
 

This model of diffusion rate was found to suit 
best our measurement results comparatively to 
other available models [16]. With the knowledge 
that the porosity refers to the void pores in the 
soil capable of being filled with water (and/or 
gas), it can be conjectured that a high porosity 
medium with lower moisture content will result in 
high gas diffusivity compared to higher moisture 
content with same porosity or lower porosity 
medium with same moisture content condition 
(Fig. 4). 
 

2.4 Soil Physical Properties of the Field 
 

In the field, soils were sampled from the surface 
as well as from within boreholes to determine 
their density, moisture content, and porosity. 
Moisture content was measured by heating the 
soils in an oven at 105

o
C for 24 hours. Dry 

density was calculated based on dry weight and 
soil volume. Soil porosity was estimated from the 
dry density using Eq. (6). 
 

1 d

p





   (6) 

 

where  (m3 m-3) is soil porosity and is evaluated 
using dry density, d (kg m-3) and the particle 
density for a mineral soil (p = 2560 kg m-3). 
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Fig. 3. Field measurement method of soil CO2 concentration profiles using a gas pump and 
gas bag at INAS test field, and laboratory measurements with a CO2 analyzer 
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Fig. 4. The effects of moisture content and soil porosity on the gas diffusion coefficient, as 
calculated by the models of Moldrup et al. (1997) 

 
Table 1. Physical properties of the soil at INAS field during measurements 

 
Parameter Symbol Unit Soil*  
Dry density d Kg m-3 1530 – 1695 (1620) 
Moisture content  m3 m-3 0.092 – 0.157 (0.124) 
Porosity  m3 m-3 0.338 – 0.402 (0.367) 
*range (average value) 

 

3. RESULTS AND DISCUSSION 
 

In the field, measurements of soil CO2 
concentration were carried out from November 
2015 to March 2016 (Fig. 2). The CO2 
concentration profile up to 1.0 m depth followed a 
logarithmic trend with R

2
 = 0.981 on average 

(Table 2) and was generalized in Eq.7. A range 
of values was measured at each depth, i.e., from 
1300 to 8700 ppm at 0.1 m depth; 2500 to 10800 

ppm at 0.2 m depth; 4200 to 13200 ppm at                   
0.3 m depth; and 5800 to 16500 ppm at 1.0 m 
depth. 
  

   0ln   s oC z y a z z    (7) 

 
where a,y0 and z0 were coefficients estimated by 
the logarithmic regression. Based on Eq. 2, the 
surface CO2 flux could be estimated using Eq. 8, 
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0

0

1
  sF D a

z
   (8) 

 

CO2 concentration profiles for the INAS field are 
shown in Fig. 5. The soil respiration changed 
seasonally as a function of the soil temperature, 
affecting thereby the CO2 concentration profile 
[17,18]. High CO2 concentration in the near 
surface (up to 0.3 m depth) was observed in 
November 2015, when soil temperature was still 
high (17

o
C on average), and also in March 2016, 

when the growing season began [19]. The lowest 
CO2 concentration was recorded in February, 
presumably because of the decrease in the 
microbial activity or root respiration, as soil 
temperature was minimal (daily mean 
temperature was 7.4oC on average in February, 
while daily total precipitation was at its lowest, 
about 3.0 mm on average). Evidently, the high 
CO2 concentration hints at a higher gas 
production concurrently with a low diffusion rate 
[20, 21]. 
 

Based on Eq. 8 and the values of a and z0 from 
logarithmic regression of soil CO2 concentration 
profile, the estimated surface CO2 flux was 
shown in Table 2. The surface CO2 flux was 
found higher when soil concentration was higher 
as well, especially in 0.1m soil depth. High CO2 
concentration in 0.1 m soil depth indicated high 
surface CO2 flux because most of the surface 
CO2 gas flux was delivered from the shallow 
surface, 76.3% of it mostly from 0 to 15 cm soil 
depth [21] and more than 75% of it was 
originated from 20 cm soil depth [22]. 
 

We used measured surface CO2 flux to validate 
the estimated one. Surface CO2 flux at INAS field 
had been measured using close-chamber 
method (Fig. 6). A hemispherical chamber, 10 
cm in radius, was placed on the soil surface to 
trap the CO2 emitted. Before starting the 
measurement, the chamber was opened to the 
air for 4 minutes to clear it. Then, the chamber 
was placed on the soil surface for 5 minutes. The 
gas inside the chamber was pumped and 

circulated using a vinyl tube, 10 mm in diameter, 
connected to an air pump and a gas analyzer to 
measure the CO2 concentration. The gas was 
allowed to flow back to the chamber to ensure 
the chamber's internal pressure remained 
constant and to prevent gas diffusion. 
 
The surface CO2 flux was calculated based on 
the rate of the CO2 gas increase inside the 
chamber, having a volume of 2090 ml and a 
contact surface area of 314 cm

2
, as defined in 

Eq. (9). 
 

0
c

dCV
F

A dt
   (9) 

 
where, F0 (mol m-2 h-1) is the surface CO2 flux,  

(mol m
-3

) is the CO2 concentration in the 
chamber, V (m3) is the volume of the chamber, A 
is the surface area (m

2
) covered by the chamber, 

and t (h) is time. 
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Fig. 5. Soil CO2 concentration profiles at INAS 
test field. The measurement date and surface 

temperature are given in parentheses 

 

Table 2. The values of a, z0 and estimated surface CO2 flux using Eq. 8 
 

Measurement time a (mol m-3) z0 (m) Surface flux, F0 
(mol m

-2
 h

-1
) 

16-Nov-15 0.395 -0.096 0.0101 
8-Dec-15 0.699 -0.198 0.0087 
22-Dec-15 0.170 -0.148 0.0028 
7-Jan-16 0.302 -0.117 0.0064 
4-Feb-16 0.108 -0.104 0.0026 
18-Feb-16 0.120 -0.053 0.0055 
3-Mar-16 0.336 -0.242 0.0034 
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Fig. 6. Surface CO2 flux measurement using the close-chamber method in the field 
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Fig. 7. Estimated and measured surface CO2 flux with soil temperature (filled triangles are the 
estimated surface CO2 flux derived from soil CO2 concentration profile; open circles are the 

measured surface CO2 flux while filled circles represent the one that measured with the same 
condition of soil CO2 concentration profile) 

 

From the 103 data measurement at the field 
using close-chamber method (Fig. 6). It was 
ranged from 0.00097 to 0.0186 mol m-2 h-1 with 
mean value of 0.006±0.0003 mol m

-2
 h

-1
 against 

increasing temperature from 6°C to 29.6°C 
(mean value of 17.4±0.5°C). These results 
showed a similar range in available literature 
[23]. In contrast, W. Kao & K.Chang (2009) and 
Pingintha et al. (2010) reported soil CO2 flux 
having a lower value to ours [24,16]. 
 
Using the similar condition by considering soil 
temperature, we compared estimated surface 

CO2 flux with measured one, as shown in Fig. 7. 
Our results concluded that estimated surface 
CO2 flux using derived equation of logarithmic 
trend of soil CO2 concentration profile, as written 
in Eq. 8, was acceptable in the INAS field. 
 

4. CONCLUSIONS 
 

Soil CO2 concentration was measured in four 
different depths to estimate surface CO2 flux in 
INAS field. The measurement results revealed 
that soil CO2 concentration increased with soil 
depth following the logarithmic trend with R2 = 
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0.981. Based on mass balance equation with 
some assumptions and using Moldrup et al., 
(1997) diffusion rate model to estimate the gas 
diffusion coefficient, an equation to estimate the 
surface CO2 flux was proposed. Estimated 
surface CO2 flux was compared and showed a 
good agreement with measurement results of 
surface CO2 flux using close-chamber method. 
The equation presented herein is potentially 
suitable to estimate the surface CO2 flux. Also, 
this work highlighted that high CO2 concentration 
in soil, especially in 0.1 m depth, could indicate 
high surface CO2 flux. 
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