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ABSTRACT 
 

The African armyworm Spodoptera exempta (Walker) is an important migratory pest of cereal 
crops and grasslands in sub-Saharan Africa. It demonstrates great variability in the extent and 
severity of infestation of its host crops. The African armyworm is known to cause extensive 
damage to maize crops and rangeland in the transition zone of Ghana. The work reported here 
was an investigation of the relationship between the Normalized Difference Vegetation Index 
(NDVI), rainfall and temperature and how they influence the outbreak of this moth species in the 
Ejura-Sekyeredumase district of Ghana. The temporal patterns of the variables and their 
interrelationships were evaluated through graphical, logistic and standardization z-score 
transformations. A strong similarity between temporal patterns of vegetation index and rainfall was 
established. On the other hand, the temporal pattern of temperature runs opposite to NDVI and 
rainfall patterns. Standardized NDVI anomaly revealed periods of low vegetation index with 
corresponding high wetness denoting damage to vegetation due to the activities of the insects 
during outbreaks. These revelations confirm reports gathered from local famers. NDVI therefore 
appears to be a good predictor of armyworm outbreaks. Indeed a relationship was established 
between the occurrences of the moth species and multi-temporal 10-day NDVI signals. The study 
confirmed that rainfall and temperature influence the occurrence of armyworms. 
 

 

Keywords: Armyworm; climatic factors; cereals; outbreak; temporal pattern; relationship; NDVI; 
rainfall. 
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1. INTRODUCTION  
 
Insect population explosions and pest outbreaks 
are caused by changes in the environment and 
variable environmental conditions play key roles 
in triggering all types of outbreaks [1]. Climate 
change as a result of increase in carbon dioxide 
and temperature in the atmosphere cause a 
negative impact on agriculture in various parts of 
the world [2]. Besides impacts such as drought or 
flooding, dynamics of agricultural insect pests are 
affected [3]. The severity and frequency of insect 
pest outbreaks will therefore depend on the 
variability in environmental variables such as 
temperature and precipitation. This is because 
environmental factors play an important role in 
the physiological processes and distribution of 
insects. According to [4], plant pests are 
extremely dependent on climatic and 
environmental conditions since several phases of 
a pest’s life cycle is influenced by the 
combination of two or more environmental 
variables including rainfall, temperature and 
humidity. Global climate change, therefore, is 
likely to affect agro-ecosystems by frequent 
insect pest occurrence and increased rate of 
development of these animals [5-7]. Ultimately, 
human health is also threatened by increased 
pesticide use due to increased pest pressures 
and reductions in the efficacy of pesticides [8]. 
Consequently, agricultural production and food 
security in many African countries and regions 
are likely to be severely compromised [4]. 
Climate change will also cause new patterns of 
pests and diseases emergence to affect plants, 
animals and humans [5].    
 

The African armyworm Spodoptera exempta 
(Walker) is a migratory moth, the larvae 
(caterpillars) of which are important pests, 
particularly in sub-Saharan Africa, the Western 
Arabian Peninsula, Pacific Islands, south East 
Asia and Australia [9]. This moth species also 
demonstrates great variability in the extent and 
severity of infestation. It is a “serious outbreak 
pest of cereal crops and grasslands in eastern 
and southern Africa, devastating small-scale 
subsistence farms and commercial production 
alike” [10]. The larvae occur in large numbers 
when there is an outbreak hence the name 
“armyworm”. They travel in large masses               
from one field to another in search of food to 
complete their development, devouring crops              
as they move. Significant yield losses have             
been consistently reported from eastern                    
and southern Africa. Similar reports from           

West Africa have been recorded only in recent 
decades [11]. 
 
In Ghana, the African armyworm is reported to 
cause extensive damage to cereal crops and 
rangeland in the transition zone. The area 
represents the transition from semi-deciduous 
forest and the Guinea Savannah accounting for 
some 28% of Ghana’s land area. The main 
economic activity in the area is crop and animal 
husbandry. According to Schmitz [12] the 
transition zone also referred to as the maize belt 
is highest in terms of maize production in Ghana. 
Armyworm outbreaks can have catastrophic 
impacts on farmer’s crops, their livelihoods and 
food security. Armyworm out breaks is usually 
only periodic across the country. However the 
frequency of outbreaks in the transition zone is 
higher and is a major concern. The loss of large 
cropped areas affects agricultural productivity. 
Understanding the ecological factors that lead to 
armyworm outbreaks is a key step towards the 
development of intervention strategies. 
 
Estimated grain losses during outbreaks in 
individual locations have averaged 60 per cent 
but, in many cases there is total crop loss [13]. 
The main armyworm control tool according to 
[11] is the application of chemical pesticides. 
However, due to the negative impacts of 
chemical pesticides, increased efforts have 
recently been directed at developing safe and 
environmentally friendly alternatives such as 
aqueous neem extract [13]. baculoviruses –
nucleopolyhedrovirus (SpexNPV) [14]. 
Entomopathogenic fungi (Green Muscle) [10]. 
Recently in Tanzania a monitoring and prediction 
system based on insect trap catches of moths in 
relation to rainfall has been adopted with some 
success [11]. 
 
A reliable method of forecasting outbreaks will 
greatly enhance the application of management 
strategies [13]. The common approach for 
analyzing the relationship between population 
dynamics and climatic variables according to 
Stenseth et al. [15] is by means of simple 
correlation or using the climate as an additive 
covariable in statistical models. This involves 
techniques such as remote sensing (RS), 
geographic information system (GIS) and 
ecological models which have the advantage of 
mapping the distribution of the insects and                 
offer the most efficient and effective means to 
inform about their spatial and temporal 
distribution [16].  
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The economy of Ghana is agricultural 
dependent. Agriculture provides over 37.3% of 
the country’s gross domestic product (GDP) [17].  
More than 60% of the population is engaged in 
the agricultural sector. The sector is dominated 
by smallholder farmers. Over 70 % of the farmers 
cultivate on holdings less than three hectares 
[12]. About 80% of the farming population is 
resource-poor practicing subsistence agriculture. 
Eighty-nine percent (89%) of the farming 
population cultivate maize [18]. Maize is both the 
main staple and is also the primary feed 
ingredient for the countries booming poultry 
industry. According to official statistics, the area 
planted to maize in Ghana currently averages 
about 650,000 ha per year. Crop destruction by 
insect pest constitutes one of the most important 
constraints farmers face in their effort to produce 
food to feed the ever increasing population.               
The nation’s aim to attain food self-sufficiency              
by 2020 would be illusive unless strategies                  
are developed to curtail the frequent outbreaks      
of pests such as the African armyworm.                        
In October 2006 and again in October 2009              
nine districts and three farming communities                  
in the Brong Ahafo region were hit by             
armyworm outbreaks which devastated a                      
total of 3,600 hectares of maize [19].  In                   
such situations, the livelihood of these                 
resource poor farmers and their families as well 
as the food security status of the country is 
threatened. 
 

It is therefore important to determine the 
environmental factors that influence their 
occurrences. The Food and Agriculture Ministry 
in Ghana lacks the resources for armyworm 
surveillance (Dr. J. Vespa Suglo Director PPRSD 
of MOFA, Pers. Comm.) since no such study has 
ever been carried out in Ghana. Preventive 
control of these pests before they become a 
serious problem is a major management 
technique. It is thus important to know the trend 
and scale of infestation. Environmental factors 
which influence insect behaviour can be 
monitored to deduce their relationship to 
outbreaks.  
 

The outcome of this research therefore should fill 
the information gap and provide an early warning 
guide to alert the Ministry and farmers about 
possible outbreaks.  The study therefore sought 
to ascertain whether armyworm occurrence can 
be related to a multi-temporal 10-daily NDVI 
signals as derived from SPOT Vegetation. It was 
also to establish the relationship between the 

occurrence of past outbreaks and climatic factors 
for the district. 
 

2. MATERIALS AND METHODS  
 
2.1 Site Selection 
 
The Ejura-Sekyedumase district was chosen for 
the study because of the dominance of maize 
cultivation in the country. The district is located 
within longitudes 1˚5W and 1˚39’ W and latitudes 
7˚9’ N and 7˚36’N.  The district lies within the 
transitional zone of the semi-deciduous forest 
and Guinea Savannah zones. The vegetation 
characteristics in the district are to a large extent 
dictated by the topography, climatic condition 
and patterns. The northern part is covered with 
sparse derived deciduous forest vegetation. The 
climatic conditions of the district together with the 
topographical layout are favourable for the 
cultivation of food crops. The Ministry of food and 
Agriculture records indicates that the district is 
prone to army worm outbreaks, experiencing four 
armyworm outbreaks since 1989.  

 
2.2 Data Collection 
 
2.2.1 Presence and distribution data 
   
The field work was carried out between 
September 16th and October 14th 2009. The 
district was stratified into outbreak and none 
outbreak locations. Stratification was based on 
armyworm outbreak data showing communities 
and years of attack provided by the Plant 
Protection and Regulatory Service Directorate 
(PPRSD) of the Ministry of Food and Agriculture 
(MoFA). In each stratum, 35 farms each of 
outbreak and no outbreak communities were 
randomly selected. Field data consisted of crop 
calendar information and geographical locations 
of farms under maize cultivation during past 
outbreaks. The data was obtained by conducting 
farmer interviews using a structured 
questionnaire. The interview sought information 
on cropping history, experience of armyworm 
outbreaks and the methods of control employed 
under the circumstances. With the use of a 
global positioning system (GPS), precise 
geographical locations of fields reported to have 
suffered outbreaks were recorded. Choice of 
outbreak locations was however based on 
farmers’ response.  In all, seventy farmers were 
interviewed and geolocations of farms with or 
without experience of outbreaks was recorded.  
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2.2.2 Precipitation data 
 
Daily rainfall records for the study area over the 
period 2005-2009 was obtained from the Tropical 
Rainfall Measuring Mission (TRMM) web data 
base. It consisted of precipitation time-series 
(TS) datasets that is daily variation in 
precipitation on low spatial resolution grids                
(0.25 x 0.25 degree resolution). The data                
was extracted in ASCII format for three      
individual pixels covering the study                             
area and transferred into excel. 
(http://disc2.nascom.nasa.gov/Giovanni/tovas/). 
The 10-day accumulated rainfall data was 
derived by summing the values for day 1 to day 
10, 11 to 20 and 21 to 31 for each month. This 
was done in order to put the daily rainfall data 
into similar format as the NDVI 10-day product 
for fair comparison. Additionally, the 
establishment of a relationship between rainfall 
and insect behaviour according to [17,20,21] 
could predict outbreaks. 
 
2.2.3 Temperature data 
 
The temperature data is also in daily recorded 
format and was downloaded from Atmospheric 
Data Access for the Geospatial User Community 
(ADAGUC) surface temperature web portal. 
http://geoservices.knmi.nl/adaguc_portal/index.ht
ml. This dataset provides daily temporal global 
land surface temperature with a spatial resolution 
of 0.25 degree. The data was extracted similarly 
as described above and averaged into 10-day 
decadal products for consistency. In other words, 
ten daily temperature values were averaged into 
one value. The gridded datasets allowed for 
comparison of temporal variation in climate with 
the occurrence of outbreaks in the different years 
[22]. 
 
Rainfall and temperature offer immense 
contribution to the ecological characteristics of 
Spodoptera exempta and therefore exploring 
their effects is likely to enhance the 
establishment of relationships to armyworm 
outbreaks [23,24]. 
 
2.2.4  Normalized difference vegetation index 

(NDVI) vegetation time series data 
 
The NDVI data used consisted of geo-referenced 
and cloud free SPOT-5 vegetation 10-day 
composite NDVI images at a resolution of 1 km2 
from April 1998 to October 2010 obtained from 
http://www.vgt.vito.be and the NDVI data was 
derived from the red and near-infrared bands as 

follows: NDVI = (near infrared - red)/(near 
infrared + red) [25]. NDVI composition involved 
pixel-by-pixel processing to determine the 
maximum value during each 10-day period. An 
iterative Savitzky-Golay filter was applied as in 
[26]. Further processing including subsetting and 
made available by Dr. Anton Vrieling, ITC. For 
the purpose of this study data covering 2005 – 
2009 (180 decadal images) for which the African 
armyworm outbreaks had occurred in the district 
was used. The NDVI time series were extracted 
per pixel based on the field data locations. Three 
10-day composite available for each month were 
averaged to account for the mean monthly NDVI 
particularly for the outbreak month as well as 
inter annual comparison [27]. The NDVI dataset 
provided temporal coverage for every ten days 
and was used to measure temporal variability of 
vegetation disturbance for the five year period. 
This was premised on the assumption that areas 
with healthy vegetation will record high NDVI 
values, while disturbed vegetation or unhealthy 
areas show lower values. 
 
2.2.5 Spatial pattern of outbreaks 
 
Using Erdas Imagine Classic 10.0 software, the 
attributes of the Landsat image was processed to 
cover the study area by masking the attributes to 
the district outline. Geographical locations of field 
data collected were overlaid to show the spatial 
extent of outbreak coverage of the study area. 
This was further processed into a false 
composite (RGB: 452) of the image which 
reflects the vegetation characteristics of the 
district after the outbreak. Field locations of 
presence/absence of armyworm outbreak 
overlaid on the false composite image could 
identify armyworm occurrence in the area. 
 
2.2.6  NDVI data analysis procedure to 

monitor vegetation conditions and its 
variation with time 

 
Geographical locations of field data collected 
were overlaid onto the NDVI vegetation time 
series image. Temporal profiles were then 
extracted for the pixels covering locations where 
field data were collected [28]. Using the available 
NDVI profiles, analysis focused on the 10-day, 
monthly and annual periods from 2005 to 2009. 
NDVI profiles were studied visually by exploring 
the pattern over time. In comparison to crop 
calendar information, it showed good temporal 
representation of vegetation disturbance. This 
was determined by associating low NDVI values 
in mean stacked NDVI images of 10-day 
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composite. The resultant NDVI graphical output 
exhibited some variability suggesting a 
relationship to the damage caused by the African 
armyworm outbreaks. Using the Predictive 
Analytics Software (PASW 18) [29] and the 
Scientific Package for the Social Scientist (SPSS 
17), differences emanating were considered 
statistically significant when P<0.05. 
 

2.3 Statistical Analysis 
 
Statistical analyses were performed to confirm 
the relationships observed using graphical 
visualization. In view of the binary nature of the 
dependent variable with or without outbreak 
experience logistic regression [30] best fit for the 
analysis for the elucidation of the effect of the 
predictor environmental variables was employed. 
A stepwise regression technique, which 
automatically selects the most statistically 
significant predictors among the input potential 
predictors, was used to establish a relationship 
[31]. The field locations on presence/absence of 
armyworm outbreak were regressed with the 10-
day NDVI for August, September and October 
2006 and 2009. 
 
2.3.1 Meteorological data analysis procedure 
 
Rainfall and temperature time series were 
extracted for each of the three pixels covering 
the study area. Time series plots of both climatic 
variables were used to identify whether clearly 
different climatic conditions occurred during 
outbreak years as compared to non-outbreak 
years. The assessments were based on visual 
interpretation of 10-day, monthly and yearly 
profiles variation and trends. As the climate data 
only covered three pixels, regression analyses 
that investigate spatial relations between climate 
and outbreak occurrence could not be 
performed.  
 
2.3.2 Profile analysis and interpretation 
 
To ascertain a clear relationship between NDVI 
and climatic factors, the generated profiles were 
also compared by graphical visualization for 
possible clues to determine a response by the 
insects. Profile analysis is a useful tool for 
interpreting the pattern of tests or scores and 
may be used across groups or scores for an 
individual variable. In addition, to observe 
differences in the patterns, relationships were 
explored between anomalies in the vegetation 
indices and the climatic information. The NDVI 

standardized anomalies which is the departure of 
NDVI from the long-period average, normalized 
by the long-period variability was employed. It 
indicates whether the vegetation greenness at a 
particular location is typical for a particular 
averaging period of the year. Ten-day anomalies 
are generated from the 10-day NDVI and climatic 
datasets. The transformation used in this study 
was the 10-day Z-score, which involved taking 
the set of values for a given month for example 
all Januarys and computing their Z-score value. 
This is achieved by subtracting the mean and 
dividing by the long-period standard deviation for 
that decade of the year, for each grid cell. The 
reference period is 2005 to 2009.  The 
standardized seasonal anomalies were 
calculated with the use of z-score transformation 
equation: 
 

                                          (1) 
 
where×� j and sj denote the long-term means and 
standard deviations, respectively, for month j, 
and t is a time index [32]. To test the correlation 
between precipitation and NDVI, graphical 
comparison of the temporal sequences of NDVI 
and rainfall was used as an explorative test of a 
relationship [33]. To further determine 
relationships between armyworm outbreaks               
and variation in climatic factors descriptive 
statistics and visual comparisons were 
employed. 
 

3. RESULTS AND DISCUSSION 
 

3.1 Spatial Pattern and Potential Factors 
to Explain Differences in Outbreaks 

 
The spatial distribution of armyworm outbreaks 
follow ecological gradient as per Fig. 1. The 
general pattern of outbreak is evident in the 
eastern part of the district which is characterized 
by savannah type vegetation with predominantly 
grassland and maize cultivation. The western 
portion on the other hand has more forest cover 
and records varied cropping patterns with no 
records of armyworm outbreaks. The difference 
in vegetation patterns within the district is a 
possible reason for the differences in outbreak 
levels. According to Rainey [34] air temperature 
and certain crops attract insects to outbreak 
destinations. With no outbreaks occurring in the 
forest area create natural barrier which disrupt 
the convergence of the insects.  
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Fig. 1. Ecological zones map of Ghana, showing the study area 
Source: https://www.uni-hohenheim.de/respta/pics/agriczones.jpg 

 

 
 

Fig. 2. Spatial distribution of outbreak and no 
outbreak of armyworm on a false composite 

image map of the district 

Fig. 3. Grid cell for climatic data extraction 
 

 

Spatially, more outbreaks occurred in the north-
eastern part of the district.  There were more 
locations with no experience of any armyworm 
outbreaks to the south-western part of the 
district. The spatial distribution of armyworm 
outbreak in the Ejura-Sekyedumase district 
showed that 67 % of the locations are situated in 
the north-eastern part of the district which is 
dominated by grasslands and mono-culture 
maize cultivation. [35] confirm that risk of insect 
pest outbreak is higher in monocultures and that 
monocultures may provide favorable conditions 
for population growth. The south-western part of 
the district with some forested vegetation and 
varied cropping pattern recorded mostly no 
outbreaks. This is probably due to the 

aggregated vegetation serving as wind break.  
Wind flow is impeded and affects moth transport 
to the area. Equally, ecosystems of varied 
vegetation balance enhance the activities of 
herbivorous natural enemies [35]. Large 
populations of insect pests, especially 
polyphagous species migrate en masse to newly 
establish vulnerable crop monocultures [36].             
The few outbreak locations within the area            
could probably be as a result of opening the   
area to extensive maize cultivation since 
transforming natural habitats into monocultures 
also leads to reduced biodiversity and increased 
risk of insect outbreaks [37]. The spatial 
distribution of armyworm outbreak in the Ejura-
Sekyedumase district shows the concentration of 
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outbreak locations in the predominantly 
savannah area.  
 

3.2 Monitoring Temporal Patterns of 
Vegetation Condition 

 
Fig. 4 illustrates a comparison of 10-day NDVI 
and rainfall amounts during the observation 
period for pixel 1 in the outbreak area. Monitoring 
vegetation conditions with variation in time was 
based on the analysis of decadal NDVI imagery. 
Majority of farmers in the district reported that 
they experienced armyworm outbreaks in 
October of 2006 and 2009 and the graphical 
representation show clear negative NDVI 
anomalies for October 2006 (arrowed) with a 
corresponding positive wetness within the period. 
The high rainfall recorded during the period rules 
out the possibility of drought and therefore 

suggests there was vegetation disturbance 
during that time. It will be too early to say 
however that the poor vegetation condition was 
due to damage caused by this moth species. The 
situation in 2009 is completely different from 
observation by the farmers. A positive NDVI is 
shown with a matching negative precipitation. 
The NDVI for October 2009 even though positive 
was very low. The low vegetation index gives 
some signal to vegetation disturbance which is 
difficult to explain form this study. Nonetheless, 
in 2006 a period of dryness was observed with 
high vegetation cover i.e. July-August. This 
probably could have been a dry period with 
moderate precipitation likely to create a 
congenial atmosphere for moth concentration [9, 
38,39] to attract the insects to breed. On the 
contrary no such signal can be observed in 2009 
Fig. 4. 

 

 
 

Fig. 4. Time series analysis of standardized NDVI and rainfall anomalies of a selected location 
for Ejura-Sekyedumase district. Red arrow shows negative NDVI anomaly (Oct, 2006) and blue 

positive NDVI (Oct, 2009) 
 

 
 

Fig. 5. NDVI and temperature anomalies, Red arrow shows negative NDVI, high temp and blue 
arrow positive NDVI high temp 

 



 

Fig. 6. Annual variation patterns of average vegetation, rainfall and temperature
period (2005-2009) Red arrow shows October 2006 while the blue arrow
 

Unlike rainfall, temperature anomaly 
saw a sharp drop in October 2006 during 
which a negative NDVI anomaly was registered. 
A similar trend occurred in 2009 for temperature 
even though a positive NDVI anomaly 
was observed. It is evident that during the 
period of high wetness amidst very low NDVI, 
high temperatures were observed but drop 
suddenly. 
 

 
Fig. 7. Average monthly (October) NDVI 

performance of fields during outbreak with 
time 
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Annual variation patterns of average vegetation, rainfall and temperature
2009) Red arrow shows October 2006 while the blue arrow points to October 2009

Unlike rainfall, temperature anomaly (Fig. 4)            
saw a sharp drop in October 2006 during                 

anomaly was registered. 
A similar trend occurred in 2009 for temperature 
even though a positive NDVI anomaly                        

t is evident that during the                
period of high wetness amidst very low NDVI, 

ere observed but drop 

 

Average monthly (October) NDVI 
performance of fields during outbreak with 

 

Fig. 8. Average monthly (October) NDVI 
performance of fields which never 

experienced outbreak with time
 

The positive NDVI anomaly in October 2006 was 
quite low which suggest some vegetation 
disturbances but difficult to explain at this point. 
The probability of outbreaks increased with 
increasing ability to respond to increased 
temperature [40]. [41] found a consistent 
relationship between temperature and Larch 
budmoth (LBM, Zeiraphera 
outbreaks. Björkman et al. [40] again hinted that 
the frequency of favourable years of outbreaks is 
directly linked to the temperature variations.

2008 2009
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Annual variation patterns of average vegetation, rainfall and temperature within the 
points to October 2009 

 

Average monthly (October) NDVI 
performance of fields which never 

experienced outbreak with time 

anomaly in October 2006 was 
quite low which suggest some vegetation 
disturbances but difficult to explain at this point. 
The probability of outbreaks increased with 
increasing ability to respond to increased 

] found a consistent 
relationship between temperature and Larch 

a diniana Gn.) 
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the frequency of favourable years of outbreaks is 
directly linked to the temperature variations. 
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Generally, rainfall and NDVI followed a similar 
pattern whereas temperature on the other hand 
showed a contrasting one. As can be observed in 
Fig. 4 temporal variation of NDVI is directly 
influenced by precipitation. In other words, high 
NDVI correspond with high precipitation and vice 
versa. This result corroborates with that of [42, 
43] who established that rainfall is positively 
associated with NDVI.  
 
Temporal analysis of monthly mean NDVI across 
the period of consideration showed an interesting 
pattern. A sudden dip in greenness for 2006 
picking up gradually in 2007 and 2008 but dipped 
again in 2009 (Fig. 6). This observation occurred 
in areas claimed to have suffered outbreaks in 
2006 and 2009 by farmers interviewed. The 
temporal NDVI analysis revealed low vegetation 
indices in October 2006 and 2009 and the result 
confirm reports by farmers on the period of 
outbreaks.The time series mean monthly NDVI 
plots for a selected outbreak site illustrate that 
the October 2006 time periods showed the most 
pronounced anomalous vegetation greenness 
associated with the  minor cropping seasons 
between 2005 and 2009. Statistically, the dip for 
2006 outbreak locations was significant (p<0.05) 
as compared to no outbreak locations. A look at 
areas where there was no report of outbreak also 
showed a similar trend (Fig. 7) but the reduction 
in greenness in 2009 is not significantly different 
from the outbreak locations in that year. This is 
difficult to explain because level of wetness at 

the time was fairly good. Possibly, something 
might have happened for which its explanation is 
beyond the scope of this study. 
 
The temporal pattern of rainfall contrasted with 
temperature as depicted in the Fig. 8.  In other 
words high rainfall amounts corresponded with 
low temperatures. This trend of affairs however is 
considered normal as it agrees with results of 
several other studies including [44]. It is 
important to note that climatic variability is 
referred to variations in the mean states of 
weather in each temporal scale [45]. In 2006, 
there was rainfall and temperature variability 
particularly in the month of August in which the 
amount of rainfall recorded was quite moderate 
accumulated rainfall of 45mm with fairly low 
temperatures and moderate NDVI probably 
suitable for moth aggregation and subsequent 
breeding. According to [46], concentration of 
adult moths resulting from climatic factors is 
judged to be the most likely mechanism for 
outbreaks. As shown in Fig. 7 such moderate 
accumulated amounts of precipitation and 
corresponding NDVI and temperature could be a 
contributing factor for that year’s outbreak. In 
contrast to 2009 the month of August witnessed 
heavy precipitation. The pattern of rainfall with 
regard to the onset of the minor season was 
varied. The pattern seems different for all years. 
Temperature has been fairly consistent at the 
beginning of the minor growing season for the 
five year period. 

 

 
 

Fig. 9. Time series of monthly composites of NDVI, rainfall and temperature 
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Fig. 10. Temporal patterns of rainfall and temperature 
 

Table 1. Summary output of stepwise logistic regression (Forward LR) 
 
 B S.E. Wald df Sig. Exp(B) 95% C.I. for EXP(B) 

Lower Upper 
Step 1

a
 @2131Oct06 -.156 .040 15.557 1 .000 .855 .792 .924 

Constant 32.463 8.250 15.482 1 .000 1.255E14   
Step 2

b
 @2131Oct06 -.288 .094 9.308 1 .002 .750 .623 .902 

@2130Sep09 -.092 .040 5.432 1 .020 .912 .844 .985 
Constant 74.289 24.901 8.900 1 .003 1.833E32   

a. Variable(s) entered on step 1: @2131Oct06. 
b. Variable(s) entered on step 2: @2130Sep09. 

P ≤  0.05 

 
Stepwise logistic regression was calculated and 
the result is shown in the table above. Out of the 
18 temporal 10-day NDVI decades regressed 
across the minor season for 2006 and 2009, 
October 06 and September, 09 are significant at 
p< 0.05 and the final model is depicted below: 
 

Log (p/1-p) = 74.289 - 0.288*21_31Oct06-
0.092*21_30Sep09 

 
This indicates that the last dekad of the months 
of October and September in 2006 and 2009 
respectively registered some disturbance in the 
vegetation composition of the district during the 
period; hence offer the most ideal conditions and 
therefore vulnerable months for outbreaks. This 
result could therefore be interpreted as possible 
outbreaks of the African armyworm as reported 
by the farmers interviewed. 
 
NDVI values of a whole growing season were 
constructed into trace profiles of crop growing 
conditions. These profiles indicate monthly 

variation of NDVI for the five year period. In this 
study the interpretation phase was mainly based 
on a qualitative analysis of NDVI temporal 
profiles calculated for observation points. For 
each observation, average NDVI value was 
calculated for each dekad and plotted on a graph 
(Fig. 8). Shapes and relative positions of each 
profile describe the development pattern of 
vegetation during the period. Also, accumulated 
monthly rainfall and mean temperature were 
extracted for same observation points. The 
temporal pattern of low NDVI for the months of 
October and September in 2006 and 2009 
respectively are an indication of vegetation 
disturbance. This situation could not be due to 
drought since rainfall was fairly heavy during the 
period and therefore thought to be the effect of 
armyworm outbreak.  This finding corroborate 
with [47] who reported lower NDVI values in 
remotely sensed data that represented zones of 
open and/or stressed canopy as a result of 
activities of the beet armyworm (Spodoptera 
exigua), indication that beet armyworm 
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infestations were associated with lower NDVI 
values. In another study, exceptionally high 
rainfall was related with decreased NDVI as a 
result of flooding [48]. The time series mean 
monthly NDVI plots as well as the z-score 
transformation results confirm the graphical 
visualization of temporal variability in the pattern 
of NDVI across the five year period investigated. 
This result is strange in that the z-score 
transformation analysis albeit depict a low 
positive NDVI anomaly at the same time, it does 
not show a likely outbreak in September 2009 
For 2006 enough clues gathered point to the fact 
the highly negative NDVI anomaly and positive 
anomaly in precipitation was as a result of 
activity by this moth species. 
  
Although temperature and rainfall are essential to 
the development of the African armyworm, it is 
difficult to measure their risk to outbreaks [49]. 
The rainfall and temperature variability 
particularly at the onset of the minor growing 
season for 2006 suggest reasons which could 
probably have influenced attraction of the moth 
to the area. This assertion is based on the claim 
by Shank [49] that changes in the climatic 
condition at the onset of the rainy season can 
give cause to outbreaks. Clearly, 2006 offer 
peculiar conditions for instance temperature was 
quite low coupled with moderate rainfall. Average 
temperatures close to 25°C at the beginning of 
the season enhanced mating, oviposition and 
hatchability of eggs [50,51]. In contrast however, 
the pattern and variability of these climatic 
factors do not seem to follow a trend that suggest 
clues to associate with the low NDVI values 
recorded in September 2009. Wen and Zhang 
[30] found a close relationship between the wide-
area temperature, rainfall factors and the beet 
armyworm outbreak trend.  A good spell of hot 
weather is conducive for armyworm survival [52]. 
 

4. CONCLUSION 
 
In conclusion, it is gratifying to note that this 
study is a preliminary investigation and that some 
findings will be difficult to relate to previous 
studies since the study happens to be the initial 
attempt to unravel the problem in the transitional 
zone of Ghana. An attempt has been made to 
find a relationship between NDVI and armyworm 
outbreak. Variation in climatic patterns has also 
been suggested to account for the suitable 
condition required by the adult moth to establish 
a colony and subsequent reproduction and 
destruction of crops. This study has been able to 
establish a link between NDVI and outbreak of 

the African armyworm. The transition zone 
covers about a third of the land area of the 
country and the problem abounds in the entire 
zone. This study therefore should be antecedent 
to holistically investigate the problem of 
armyworm outbreaks in Ghana. it is 
recommended that further studies be conducted 
this time with inclusion of climatic factors such as 
humidity, evapotranspirarion wind speed and 
wind direction and also cover a substantial 
portion of the zone if not all. Because of the 
difficulty to access gridded products of the above 
mentioned climatic factors, emphasis should be 
placed on direct field measurements.  
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