Identification and Enzymatic Potential of Bacillus Species Isolated from Traditional Cassava Starters: Potential for Attié ké Production

Charlotte Ehon¹, Micael Bedikou¹, Souleymane Soumahoro¹,² and Sebastien Niamké¹

¹Laboratoire de Biotechnologies, Filière Biochimie-Microbiologie, Unité de Formation et de Recherche en Biosciences, Université Félix Houphouët-Boigny, Abidjan, 22 BP 582 Abidjan 22, Côte d’Ivoire. ²Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, 10 rue Raphaël Dubois, F-69622, Villeurbanne, France.

Authors’ contributions

This work was carried out in collaboration between all authors. Authors SN and MB designed the study and wrote the protocol. Author CE wrote the first draft of the manuscript. Authors SS and CE managed the literature searches and performed the analysis. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/BJI/2017/29688

Editor(s): (1) Miguel Cerqueira, Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Portugal. (2) Chung-Jen Chiang, Department of medical laboratory Science and Biotechnology, China Medical University, Taiwan.

Reviewers: (1) Olaolu Oyedeji, Obafemi Awolowo University, Nigeria. (2) Sonagnon Kouhounde, University of Abomey-Calavi, Benin. (3) Theodore N. Djeni, Université d’Abobo-Adjame, Côte d’Ivoire.

Complete Peer review History: http://www.sciencedomain.org/review-history/17114

Received 24th September 2016
Accepted 25th November 2016
Published 3rd December 2016

ABSTRACT

Aims: Microbial enzymatic activities are important in cassava dough fermentation for attié ké production. The objective of this study was to describe the molecular identification and the amylolytic, pectinolytic and cellulolytic enzymes potential of four (4) Bacillus species involved in cassava mash fermentation for the preparation of attié ké.

Place and Duration of Study: Laboratory of Biotechnology, UFR Biosciences, University Félix Houphouët-Boigny (Côte d’Ivoire), between February 2016 and April 2016.

*Corresponding author: E-mail: niamkes@yahoo.fr;
Methodology: Four Bacillus strains (Bas 04, Bas 13, Bas 58 and Bas 66) used for this study were isolated from the traditional cassava starter “mangnan”. By using the PCR amplification of ribosomal 16S genes, Bacillus strains were identified. After culture in nutrient agar, strains were suspended in a tryptone salt solution. When we obtain Bacillus cells absorbance (turbidity) of 1.00 at 600 nm, 100 μL of this suspension were used to inoculate 5 mL of liquid medium containing peptone (1%), meat extract (1%), NaCl (0.3%) and 1% of starch or Pectin or Carboxymethyl cellulose for enzymes production. The enzymatic activities were studied at different temperatures ranged from 25°C to 50°C and pHs (4.5, 5.0 and 5.5).

Results: Bacillus thuringiensis was identified with 99% to 100% of similarity, referring to the NCBI database. The best amylase, cellulase and pectinase activities were obtained with Bas 66 (3.80 U/mg), Bas 13 (0.45 U/mg) and Bas 58 (1.09 U/mg) at different optimum temperatures (25, 40 and 50°C) and pHs (4.5, 5.0 and 5.5), respectively.

Conclusion: These enzyme activities are important for cassava dough fermentation, using these Bacillus strains, contributing to the softening of the mash thus improving texture and allowing the digestibility of attié ké.

Keywords: Attié ké; Bacillus thuringiensis; cassava; extracellular enzymes; fermentation.

1. INTRODUCTION

Bacillus species are Gram positive rods often arranged in pairs or chains with rounded or square ends and usually a single endospore. The endospores are generally oval or sometimes round or cylindrical and are very resistant to adverse conditions [1]. They are ubiquitous and diverse both in the terrestrial and marine ecosystems, and are mostly identified in the fermentation of several foods. In Africa, Bacillus are involved in the fermentation of Prospolis africana seeds to produce Okpehe [2], the African locust bean (Parkia biglobosa) to produce soumbala [3] and in the fermentation of cassava (Manihot esculenta Crantz) roots for foofoo, lafun and attié ké production [4,5,6]. In Côte d’Ivoire, attié ké is the most consumed cassava product. It is a ready-to-eat steamed granular cassava meal, couscous-like product, with slightly sour taste and whitish or yellowish colour. Attié ké is consumed two to three times a day with meat, fish or vegetables [7]. Its production involves the use of traditional starter cultures called mangnan by ébiré ethnic group in Côte d’Ivoire. This uncontrolled starter constitutes the main source of microorganisms contributing in cassava dough fermentation [8] and improving the texture, colour and flavour of attié ké [9]. For attié ké production, cassava roots are peeled, chopped to pieces, washed and grated. During the grinding process, the pieces are mixed with 10% (w/w) of mangnan and 0.1% (v/w) of palm oil. The inoculated pulp was fermented overnight in covered bins. After fermentation, the cassava paste is filled into jute bags and pressed for several hours. The dewatered paste are squeezed through a sieve to obtain rounded granules that are sun-dried and then cleaned to remove fibers and waste. The dried granules are steamed to produce attié ké [10]. Several microorganisms such as lactic acid bacteria, Bacillus spp., yeasts and molds have already been reported to play synergistic roles in the cassava fermentation [11,6].

Bacillus species were suspected of producing extracellular enzymes such as amylases, pectinases and cellulases. The amylolytic enzymes catalyze the hydrolysis of starch into glucose and dextrin hydrolysates used as carbon (energy) sources in fermentation [12,13]. Pectinases hydrolyzing pectic molecules and cellulolytic enzymes responsible for the breakdown of celluloses contribute together to the soft consistency and texture of cassava mash [14,15]. These three different enzymes produced by Bacillus spp. were important because they synergistically take part in quickly softening of the cassava mash thus improving its digestibility when transformed into attié ké [16].

This paper describes the molecular identification and the amylolytic, pectinolytic and cellulolytic enzymes potential of four (4) Bacillus species involved in cassava mash fermentation for the preparation of an esteemed Ivorian dish called attié ké.

2. MATERIALS AND METHODS

2.1 Bacillus Stains Preparation

The four presumptive Bacillus strains (Bas 04, Bas 13, Bas 58 and Bas 66) used for this study were isolated from the traditional cassava starter
“mangnan” collected from 11 manufacturing units in the District of Abidjan (Koumassi, Abobo, Marcory, Attécoubé, Port-Bouet, Treichville, Adjamé, Yopougon, Cocody, Bingerville and Anyama) and from 3 areas (Bassam, Dabou and Jacqueville) located in peri-urban areas of this District [17]. Bacillus strains were selected on the basis of their great ability to produce extracellular enzymes as amylases, pectinases and cellulases in solid medium. For isolation, Bacillus strains were prepared after an enrichment step described as follow: 10 g of each sample were diluted in 90 mL of a sterile buffered peptone water and incubated at 30°C for 18 hours. The medium was then heated in a water bath at 80°C for 10 min in order to select bacteria on nutrient agar (Scharlau, Spain). In solid medium, enzymes production was carried out on Petri dishes using the Ouattara et al. [18] method. The medium contained 0.28% of (NH₄)₂SO₄; 0.6% of K₂HPO₄; 0.01% of MgSO₄·7H₂O; 0.2% of KH₂PO₄; 0.02% of yeast extract; 2% of agar and 1% of different carbohydrate sources (starch for amylase production, citrus pectin (Sigma) for pectinase production and Carboxymethyl cellulose for cellulase production).

2.2 Molecular Identification of Bacillus Isolates

2.2.1 Total DNA extraction

DNA was extracted by thermic shock. The Bacillus strains were grown during 24 hours at 30°C on a nutrient agar medium. A loopful of pure culture was then suspended in 300 µL of sterile distilled water and successively maintained at -20°C for 30 min and at 99°C for 15 min. After centrifugation at 13000 g for 10 min, the supernatant was used as the total DNA extract.

2.2.2 PCR amplification of ribosomal 16S gene, partial sequencing and sequence analysis

The 500 bp fragment containing the hyper variable 16S rDNA region of each sample was amplified by using two primers: F27 (5’-AGAGTTTGATCCTGGCTCAG-3’) and R520 (5’-ACCGCGGTGCTGGC-3’) [19]. The PCR amplification was carried out in a Biometra thermocycler (model Tgradient, Germany). Reactions were performed in a final volume of 50 µL containing 1 µL of DNA extract, 0.25 µL of 5U taq polymerase (Go Taq DNA polymerase, Promega®, USA), 5 µL of 10X buffer, 1 µL (10 mM) of deoxynucleoside triphosphate (dNTPs, BioRad® France) and 2 µL (10 mM) of each primer (Eurogentec, Lyon, France). After an initial denaturation at 95°C for 4 min, reactions were run for 35 cycles, each cycle comprising: denaturation at 95°C for 1 min, annealing at 56°C for 1 min and extension at 72°C for 1 min. Finally, an extension at 72°C for 10 min was carried out. The presence and yield of specific PCR products were monitored by agarose 0.8% (w/v) gel electrophoresis at 90 V for 1 hour in Tris-Borate-EDTA buffer 1X and made visible by ethidium bromide staining and UV transillumination. PCR products were purified using the nucleospin extract II kit (Macherey Nagel, Germany) and then, sequenced using the primer F27. The partial 16S rRNA gene sequences determined in the Microbiologie, Adaptation, Pathogénie laboratory (Lyon, FRANCE) have been deposited in the National Center for Biotechnology Information (NCBI) database.

2.3 Enzymes Production and Microbial Growth

For enzymes (Amylases, Pectinases and Cellulases) production in liquid medium, strains were cultivated on nutrient agar medium during 24 hours at 30°C. After the period of incubation, pure culture was suspended in a tryptone salt solution in order to obtain Bacillus cells absorbance (turbidity) of 1.00 at 600 nm. Then, 100 µL of this suspension were used to inoculate 5 mL of liquid medium containing peptone (1%), meat extract (1%), NaCl (0.3%) and 1% of carbon sources: starch for amylase production, Pectin for pectinase production and Carboxymethyl cellulose for cellulase production [20]. The medium was incubated for 24 hours at 30°C under constant rotary agitation (105 rpm). The growth of strains was spectrophotometrically (Pioway, China) measured (600 nm) at 0; 12 and 24 hours in different production media. After incubation, culture was centrifuged at 15,000 rpm for 30 min and the resulted supernatant use as extracellular enzyme extracts.

2.4 Determination of Enzymatic Activities

All the studied enzymes activities were determined in accordance with the optimal conditions (pH and temperatures) of the cassava mash fermentation heaps as well as these of each enzyme.

The amylasic activity was determined by hydrolyzing soluble starch substrate 1% (w/v)
(Sigma, USA) and quantifying the liberated reducing sugars after complexation with 3,5 DNS acid [21]. Reactions were performed in a 100 mM acetate buffer (pH 4.5 to pH 5.5). The different amylasic extracts (100 µL) were mixed with 150 µL of starch substrate and incubated at 25°C (optimum temperature of the studied amylases) and at 30°C (average temperature of fermentation) for 30 min. Spectrophotometric glucose quantification was carried out at 540 nm by reference to a standard glucose solution (1 mg/mL). For cellulase assay, the same protocol was carried out at 30°C and 40°C (optimum temperature of the studied cellulases) by using caboxymethyl cellulose (CMC) as substrate. Concerning pectinase activity, citrus pectin (Sigma) was used as substrate. The enzymatic reaction was measured for 30 min at 30°C and at 50°C which is the optimum temperature of the studied Bacillus pectinas. The released amount of galacturonic acid was quantified at 540 nm by referring to a standard curve of a galacturonic acid solution (10 mM). One unit of each specific activity was defined as the amount (mg) of enzyme that hydrolyses 1 µmol of substrate per min under the assay conditions.

2.5 Estimation of Proteins Concentration

The proteins concentration was estimated by following the Lowry et al. [22] method. Bovine serum albumin (BSA) was used as the standard protein.

3. RESULTS AND DISCUSSION

3.1 Electrophoresis of PCR Products

The electrophoretic analysis of amplified ribosomal 16S genes revealed fragment sizes of about 500 bp as compared to molecular markers (Fig. 1).

3.2 16S rDNA Sequencing and Bacillus Species Identification

The sequencing of the hyper variable 16S rDNA region allowed the identification at genus and species level of Bacillus isolates. The sequences obtained from each isolate were aligned with those of the NCBI database and all the studied microorganisms were identified as Bacillus thuringiensis with 99% to 100% of similarity (Table 1). The different gene sequences obtained are listed in Appendix 1.

Table 1. Degree of similarity of rDNA sequences and identification of the scientific name of Bacillus species isolated from the traditional attiéché starter mangnan

<table>
<thead>
<tr>
<th>Bacillus species</th>
<th>Degree of similarity (%)</th>
<th>Identification name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>100</td>
<td>Bacillus thuringiensis</td>
</tr>
<tr>
<td>Bas 04</td>
<td>99.58</td>
<td>Bacillus thuringiensis</td>
</tr>
<tr>
<td>Bas 13</td>
<td>99.59</td>
<td>Bacillus thuringiensis</td>
</tr>
<tr>
<td>Bas 58</td>
<td>100</td>
<td>Bacillus thuringiensis</td>
</tr>
<tr>
<td>Bas 66</td>
<td>99.38</td>
<td>Bacillus thuringiensis</td>
</tr>
</tbody>
</table>

![Fig. 1. Agarose gel electrophoresis of PCR products of four Bacillus species isolated from the traditional attiéché starter mangnan](image)
Bacillus are microorganisms involved in cassava fermentation to attiéké production. In this study, four Bacillus strains isolated from mangan were identified as Bacillus thuringiensis by the ribosomal 16S gene sequencing method. In Côte d’Ivoire, Bacillus thuringiensis was never specifically identified in attiéké fermentation. However, in Indonesia, it was already reported the presence of this Bacillus species in a cassava fermented food named ‘Tape’ [23].

It has been shown that Bacillus thuringiensis secretes some proteins that are toxic to immature insects (larvae) and thus, widely used as biopesticide in agriculture [24,25]. However, these proteins are generally safe for humans and animals [26]. When Bacillus thuringiensis is consumed in food, it is confined to the gut with its growth being inhibited. Its toxins are also denatured like other proteins in the diet [25]. As Bacillus thuringiensis is not dangerous for human health, it can be used for cassava dough fermentation for attiéké production. Also, it produces methionine, an essential amino acid which cannot be synthesized by human and animals. The amino acid constitutes an important food additive necessary for physiological balance [27]. Indeed, methionine participates in peptides and proteins synthesis. It is a glutathione precursor, a tripeptide that reduces reactive oxygen species and thus protects cells from oxidative stress [28]. The fulfilled beneficial effects of Bacillus thuringiensis above make it suitable for the fermentation of cassava dough in order to improve the textural and nutritional quality of the thereafter produced attiéké.

3.3 Growth of Bacillus Strains in Enzymatic Production Media

The growth of the studied strains in all enzymatic production media increases up to 12 hours. After this time period, growth remains stable or decline slightly. All strains showed optimal growth in the medium containing starch as carbon source (Fig. 2A) followed by those supplemented by cellulose (Fig. 2B) and then pectin (Fig. 2C).

The improved growth of the strains was obtained in starch medium because this polysaccharide could be better assimilated by strains for their growth compared to cellulose and pectin.

3.4 Amylolytic Activity

All of the studied Bacillus strains produced extracellular amylases with optimum activity of 3.80 U/mg of proteins obtained from Bas 66 strain at 25°C (Data not shown) and at pH 5.5 (Fig. 3A).

![Enzymatic Production Media](image)

Fig. 2. Growth of Bacillus strains in different enzymatic production media

A: Starch medium, B: Cellulose medium, C: Pectin medium

The production of extracellular amylases by Bacillus spp. has been demonstrated in several scientific reports [29,30,31,32,23]. For attiéké production, it is very important to use Bacillus spp. that have the ability to secrete extracellular enzymes for better hydrolysis of the starch in cassava dough. Our study showed that extracellular amylase activities of the fourth strains were higher at 25°C compared with those measured at 30°C (average temperature of
cassava dough fermentation). In this respect, it would be interesting to create the conditions for fermentation at 25°C and pH 5.5 to allow a better activity of secreted amylases from the studied Bacillus species. Feller et al. [33] have also reported about an amylase whose activity at 25°C is higher than those determined at 30 and 35°C thus corroborating our results. However, the present results are different to those of Vidyakshmi et al. [34] who have reported about another amylase activity from Bacillus spp. that was higher at 35°C compared with those measured at 25°C and at 30°C. It is also important to highlight that, during the fermentation of the cassava dough, the measured pH values decreased from 6.2 to 4.4 while the temperature varied between 28-30°C [6,35]. In view of the foregoing parameters, it could be conclude that all the studied strains are able to produce extracellular amylases throughout the duration (24 h) of the fermentation and then, contribute significantly to cassava starch hydrolysis. Indeed, it was previously reported that microbial strains which secrete amylase quickly, and that have the ability to metabolize starch could be used as starter for the bioconversion of cassava dough and thus accelerate significantly the fermentation process [36]. Besides their beneficial action in fermentation, these cheap Bacillus amylases could be used in medical and pharmaceutical applications for therapeutic and diagnostic tools for managing a quite number of diseases ranging from ordinary problems to gene therapy by correcting the enzyme deficiency and in analytical chemistry industries because of their low cost, ease of production and economic advantages [32,37].

3.5 Cellulolytic Activity

The extracellular cellulolytic activities of the four Bacillus thuringiensis species were also observed. They were optimally expressed at pH 5.5 and 30°C for Bas 13, Bas 66 and Bas 04 strains (Fig. 4A) and at 40°C and pH 5.5 for Bas 58 (Fig. 4B). At 40°C, Bas 66 showed its maximum cellulolytic activity in the extracellular medium at pH 4.5.

The variable and interesting extracellular activities observed could suggest a combined action of several cellulases that could be adequately used during cassava dough and similar substrate hydrolysis. So, Bas 04, Bas 13 and Bas 66 deserve attention as ferments for attiéké and other cassava based products. The addition of cellulolytic bacteria in the cassava dough involves considerable softening in fiber structure and thus, helps in improving the digestibility of the final product (attiéké). The cellulase activity of the studied Bacillus thuringiensis species could also be explored in various fields including textile, animal feeds and paper de-inking industries [38].

![Fig. 3. Extracellular amylolytic activities at 25°C (A) and 30°C (B) of amylases produced by four Bacillus (Bas 04, Bas 13, Bas 58 and Bas 66) strains isolated from the traditional attiéké starter mangnan](image)

3.6 Pectinolytic Activity

The pectinolytic activity was detected in all the studied strains but the optimal activities were measured in the liquid reaction medium at pH 5.5. The optimum pectinase activities were detected at 50°C but the highest (1.098 U/mg of proteins) was observed with Bacillus thuringiensis 13 (Bas 13). In contrast, the weakest pectinase activity (0.38 U/mg of proteins) was observed with Bas 58 at pH 5.0 (Fig. 5B).
beside the production of amylolytic and cellulolytic enzymes, the studied Bacillus strains can also produce extracellular pectinases. These results were already reported for Bacillus polymyxa [39]. In this study, the maximal pectinolytic activity was observed at pH 5.5 which match the range of pH variation during the fermentation process. As the temperature of the fermentation process is closed to 30°C, Bas 13 that showed maximal pectinase activity at pH 5.5 and at 30°C could be an interesting starter for the softening of cassava dough and thus, it could more participate in improving the textural quality of the obtained attiéké. Extracellular pectinase produced by Bacillus species are of main interest in food biotechnology [40]. Indeed, they were several times identified in improving the digestibility of plant organic matter [41]. Also, pectinases play important roles in the metabolism of almost all organisms (plants, animals, fungi, bacteria and viruses) [40]. Given the wide applications of pectinases, the Bacillus thuringiensis pectinase produced in this study could have potentials for biotechnological applications in various industries such as the pharmaceutical, agricultural and bioremediation [40].

Fig. 4. Extracellular cellulytic activities at 30°C (A) and 40°C (B) of cellulas produced by four Bacillus (Bas 04, Bas 13, Bas 58 and Bas 66) strains isolated from the traditional attiéké starter mangnan

Fig. 5. Extracellular pectinolytic activities at 30°C (A) and 50°C (B) of pectinases produced by four Bacillus (Bas 04, Bas 13, Bas 58 and Bas 66) strains isolated from the traditional attiéké starter mangnan

4. CONCLUSION

Bacillus thuringiensis isolated from the traditional cassava inoculum mangnan can produce many extracellular enzymes such as amylases, cellulases and pectinases. The interesting extracellular activities of these enzymes at 30°C and in pH values ranged from 6.0 to 4.5 were important for cassava mash fermentation to attiéké production. The studied Bacillus thuringiensis strains were able to produced amylases, cellulases and pectinases which expressed their activities in different pH and temperature conditions. As these conditions match the cassava dough fermentation parameters, Bas 04, Bas 13, Bas 58 and Bas 66
could be used together as alternative starters in fermentation for softening and improving the digestibility of attiééké and other cassava products. However, the strains must be tested to be non-pathogenic.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. SMIIs (UK Standards for Microbiology Investigations). Identification of Bacillus species, the standards unit, microbiology services. PHE Bacteriology. 2015;1-27.
19. Anzai Y, Kim H, Park J, Wakabayashi H. Phylogenetic affiliation of the Pseudomonas based on 16S rRNA
APPENDIX 1

Bas 66

TACTGCA GTCGAGCGAATGGATTAAGA GCTTTGCTCTTA AAGGTAGTAC CGCGGACGCGGAGTGA TA
ACAC GTGGGTAACCTGCACATAGACTGGGATAACTCCGGGAAACC CGGGCTACAATACCGGATAA
CATTTTGAAACCGCATGTGTTTGGAAATTGAAAGGCGGCTTCGCTGCACTTATGGAATGGACCCGC
GTCGCAATTTGCTTTGGTGGAACCTGCCCATAAGACTGGGATAACTCCGGGAAACCGGGGCTAATACCGGATAA
CATTTTGAACCGCATGGTTCGAAATTGAAAGGCGGCTTCGCTGTCACTTATGGATGGACCCGC
GTCGCAATTAGCTAGTTGGTGGAATACCGGCTACCAAGCAAGCGAATCGTGACGGCAGCTGAGA
GGGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGG
AATCTTCCGAATCGGAAAGTCTGACGGAGCAACGCCGCGTGAGTGATGAAGGCTTTCGGGT
CGTAAAAACTCTGTTGTAAGGGAAGAACAAGCTGCACTTGAATAAGCTGCGACCTTTGACCGTACCT
AACCAGAAGGCCACCGCTAACTACGTGCACCGACGCCGCTAA

Bas 58

TACTGTA GTCGAGCGAATGGATTAAGA GCTTTGCTCTTA AAGGTAGTAC CGCGGACGCGGAGTGA TA
ACAC GTGGGTAACCTGCACATAGACTGGGATAACTCCGGGAAACC CGGGCTACAATACCGGATAA
CATTTTGAAACCGCATGTGTTTGGAAATTGAAAGGCGGCTTCGCTGCACTTATGGAATGGACCCGC
GTCGCAATTTGCTTTGGTGGAACCTGCCCATAAGACTGGGATAACTCCGGGAAACCGGGGCTAATACCGGATAA
CATTTTGAACCGCATGGTTCGAAATTGAAAGGCGGCTTCGCTGTCACTTATGGATGGACCCGC
GTCGCAATTAGCTAGTTGGTGGAATACCGGCTACCAAGCAAGCGAATCGTGACGGCAGCTGAGA
GGGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGG
AATCTTCCGAATCGGAAAGTCTGACGGAGCAACGCCGCGTGAGTGATGAAGGCTTTCGGGT
CGTAAAAACTCTGTTGTAAGGGAAGAACAAGCTGCACTTGAATAAGCTGCGACCTTTGACCGTACCT
AACCAGAAGGCCACCGCTAACTACGTGCACCGACGCCGCTAA

Bas 13

ATACTGCA GTCGAGCGAATGGATTAAGA GCTTTGCTCTTA AAGGTAGTAC CGCGGACGCGGAGTGA TA
ACAC GTGGGTAACCTGCACATAGACTGGGATAACTCCGGGAAACC CGGGCTACAATACCGGATAA
CATTTTGAAACCGCATGTGTTTGGAAATTGAAAGGCGGCTTCGCTGCACTTATGGAATGGACCCGC
GTCGCAATTTGCTTTGGTGGAACCTGCCCATAAGACTGGGATAACTCCGGGAAACCGGGGCTAATACCGGATAA
CATTTTGAACCGCATGGTTCGAAATTGAAAGGCGGCTTCGCTGTCACTTATGGATGGACCCGC
GTCGCAATTAGCTAGTTGGTGGAATACCGGCTACCAAGCAAGCGAATCGTGACGGCAGCTGAGA
GGGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGG
AATCTTCCGAATCGGAAAGTCTGACGGAGCAACGCCGCGTGAGTGATGAAGGCTTTCGGGT
CGTAAAAACTCTGTTGTAAGGGAAGAACAAGCTGCACTTGAATAAGCTGCGACCTTTGACCGTACCT
AACCAGAAGGCCACCGCTAACTACGTGCACCGACGCCGCTAA

Bas 04

ATACTGCA GTCGAGCGAATGGATTAAGA GCTTTGCTCTTA AAGGTAGTAC CGCGGACGCGGAGTGA TA
ACAC GTGGGTAACCTGCACATAGACTGGGATAACTCCGGGAAACC CGGGCTACAATACCGGATAA
CATTTTGAAACCGCATGTGTTTGGAAATTGAAAGGCGGCTTCGCTGCACTTATGGAATGGACCCGC
GTCGCAATTTGCTTTGGTGGAACCTGCCCATAAGACTGGGATAACTCCGGGAAACCGGGGCTAATACCGGATAA
CATTTTGAACCGCATGGTTCGAAATTGAAAGGCGGCTTCGCTGTCACTTATGGATGGACCCGC
GTCGCAATTAGCTAGTTGGTGGAATACCGGCTACCAAGCAAGCGAATCGTGACGGCAGCTGAGA
GGGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGG
AATCTTCCGAATCGGAAAGTCTGACGGAGCAACGCCGCGTGAGTGATGAAGGCTTTCGGGT
CGTAAAAACTCTGTTGTAAGGGAAGAACAAGCTGCACTTGAATAAGCTGCGACCTTTGACCGTACCT
AACCAGAAGGCCACCGCTAACTACGTGCACCGACGCCGCTAA

© 2017 Ehon et al.: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://sciencedomain.org/review-history/17114