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Abstract

Asset-liability management is a means of managing the risk that can arise from the changes in
the relationship between assets and liabilities. Value-at-risk (V,R) and tail conditional
expectation (TCE) have also emerged in recent years as standard tools for measuring and
controlling the risk of trading portfolios. In some dynamical settings however, the limits of TCE
can be transformed into the limits of VR and conversely even though TCE is more preferable
to V,R since it is coherent and VR is not. In this paper we obtain the optimal price of an
institution’s assets- liabilities under the TCE with no transaction cost.
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1 Introduction

In cases such as in portfolio containing option as well as credit portfolio (i.e wealth distributions
that are highly skewed), it is reasonable to consider asymmetric risk measures since individuals
are typically loss averse. Asset-liability control is a means of managing the risk that can arise from
changes in the relationship between asset and liabilities. Value — at — Risk (V,R), a downside risk
measure, has also emerged as the industry standard with regulatory authorities enforcing its use in

risk measurement and management (Daniel et al., 2009; Jorion, 2001).
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Let risk Z be a non-negative random variable with cumulative distribution F, where Z may refer
to a claim for an institution’s asset or liability. Given 0 < a < 1, the z,, determined by F(z,) =
1— F(z,) = a and denoted by V,R,(1 — a) is called the value at risk (V,R) with a degree of
confidence 1 — q. The conditional expectation of Z given by Z > z,, denoted by TCE,(z,) =
E((Z|Z > z,)) is called the a tail conditional expectation (TCE) of Z at VR z, .

Notice that
TCE;(2y) = 24 + E(Z — Z,|Z > z,),

where (Z — t|z > t)is known as the residual lifetime in reliability (Shaked and Shanthikumar,
1994) and the excess loss (liability) in finance.

The TCE,(z) function is increasing in z > 0 or equivalently, TCE,(z) is decreasing in «a €
(0,1) since %(z +E(Z—z|Z >2)) =0.

Both ;R and TCE are important measures of right — tail risks which frequently encountered in the
insurance and financial investment. It is known that the TCE satisfies all the desirable properties
of a coherent risk measure (Artzner et al., 1999; Daniel et al., 2010; Rockafellar and Uryasev,
2001), and that the TCE provides a more conservative measure of risk than ;R for the same level
of degree of confidence (Landsman and Valdez, 2003). Therefore, the TCE is more preferable
than the V,R in many applications and has recently received growing attentions in the insurance
and finance literature. However in some dynamical settings, it is possible to transform a TCE limit

into an equivalent VR limit, and conversely (Cuoco et al., 2008).

In this paper we apply TCE to the asset-liability control model to determine the price of asset or

liability of a financial institution without transaction cost.

2 Formulation of the Problem

We assume the institution operates on a market of one riskless bank with constant interest rate r

and m different stock. The evolution of stock prices is described by an m-dimensional Wiener

process W (t) on the filtered probability space (Q, f, (fz), P) with f; = a{W(s); 0 < s < t}:
dB(t) = rB(t)dt (1

dS(t) = w;S®)dt + g;S)dW (), i=1,..,m. 2
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Here o, = (O‘i j (t))‘ - is an m x m positive definite matrix representing the covariance
isjsm
structure, ¢'c. Where ¢ is the transpose of ¢. The institution has initially x, Naria invested in the

yune

buying and selling arbitrarily large or small amounts of stock from its bank account at any time.
The institutions portfolio selection strategy 6 is described by the control processes C (t) and L (t),
where C (t) (the institution net cash flow at time t) and L(t) (the market value of the institution’s
liabilities at time t) are f— adapted vector processes. The dynamics of the control system (Osu and
Thedioha, 2011) is governed by the differential equations:

dse) = 50 [(u+ "72) dt + odw (6)| + dC(e) — dL () 3)
and
dB(t) = rB(t)dt — (1 + a)dC(t) + (1 -1 ) dL(b), 4)

with boundary conditions S(t) = S, S(0) = Syand B(t) = B;, B(0) = B,.

Defined a wealth process h(t) as a sum additive random and multiplicative terms thus:

h(t) = {(1 -4 ) S(t) + B(t), with probability q
(1 -2D)S)B(t), withprobability 1 —q

, ®)

where A is a stochastic positive factor with probability distribution (1), such that with
probability g the integral form of (3) and (4) combined is

R(E) = h(0) + f; [rB + (1 = 1) (u +2)] ds
+(1 = Do [ dW(s) + (1 + a)C(t) (6)

Assume A — 0 and a — 0, (that is the Merton (1969, 1971) analysis of no transaction and no
consumption), we get

h(t) = h(0) + J; [rB + (u+Z)|ds +o [} aw(s). @)

The processes C(t) , L(t) and hence h(t) are right continuous with left limit at each ¢t = 0. For
each available strategy (C,L), we can associate a feasible set of controls of the long term
performance functional

~ . 1
\SZ(C! L) = llmt—)oc ? Ex [ln(h(t))] (8)
with z = (C, L), z € R2. The objective is to optimize the long-run rate of growth

Vix,y) = SUP(c,L)es 3:(C,L). ©

B is a class of pair (x,y)e z, where x and y are the initial endowment of the riskless and risky
asset respectively.
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Let (C,L) be any feasible policy. These set of controls can be approximated by a sequence of
continuous processes (C,,, L,) such that for h,, the net wealth corresponding to them, we have;

lim,_.., inf~ [Inh(t)] < lim lim, .. inf < [In h, (D)]. (10)

Thus, we can softly assume (Cy, L,,) such that wealth corresponding to them, we have C, = L, =
0.

Let In[h(t)] relate to the processes B(t) and S(t) (using Ito’s formula) by

In[h,] = fthi[rB(s) + (1 -1 ) (,u +072>5(s)] ds
0 S

o4 (s o) 52

(Rodriguez, 2005), by the assumption above, we have

In[h(t)] = fothis[rB(s) + (u + %2) S(S)] ds + f;%adw(s) (11)
or

h, = hpexp fot ((rB(s) + uS(s) + %JZS(S)) ds + fOtS(s)crdw(s)>,
where hy > 0 denote the initial value of the portfolio. Note that (11) implies

h(t+7) = h@®exp (1 (rB(s) +uS(s) + §025(s)) ds+ [ S©adw(s)), (1)

forany T > 0.

Foragivent > 0,h > 0 and S € R", let
Ai(hy, S) = heexp ((rB(s) + uS(s) + %GZS(S)) T+ So(w(t+1) — w(t))) ) (13)

For a given probability level @ € (0,1) and a given horizon 7 > 0, the V,R at time t of a portfolio
s € S, denoted by VaR{ * is then given by

VaR(® = inf{L = 0: P(hf = Aeyr(hE D)) 2 L|f, < a} = (QF°) . (14)
where
Q" = sup{L € R" : P(Ryyo (], S) — b)) 2 L|f, < a}

is the quantile of the projected asset gain over the interval (¢,t + 7) and z~ = max[0,—z]. In

other words, VaRf‘S is the liability over the next period of length T which would be exceeded
only with a (small) conditional probability « if the current price S; were kept unchanged?
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The fact VaRy S s computed under the assumption that the current portfolio is kept unchanged
reflects the actual practice and the fact that the financial institutions monitoring their traders do
not typically know the trades’ future portfolio choices over VR horizon. The measure of ;R in
(14) only requires the knowledge of the current portfolio value, the current asset value and the
conditional distribution of asset returns.

The TCE of aprice s € S is defined by

TCE® =

(15)

a

+
E[hf —esr(RES
< [ ¢ t+T( ¢ t)]hfg"‘t+r(h§'5t)2_Q?'S |f )
t b
where z* = max][0, z].

Proposition 1

We have
+
VaR™ = hf [1 —exp ((rB(t) + Seu+ iStaz) T+ N‘l(a)Stcr\/?)] (16)

and

a7

((rB+(St,u)T+NN_1(a)+5taﬁ)] t
a

TCEY® = hf [1 —exp
Where N(x) and N~ 1(x) denote the normal distribution and inverse distribution functions.

Proof:

We have

p (’ﬁt+'r(htl Se—hy) < |ft))

1 L
=P|exp <rB(t) +Su+ Estaz +SioWer—wp) <1+ ™ |ft))
t
AN 1
=P|S;o(Wi—r) — W, ) < log (1 + h—) — (rB(t) + S;n + 3 S(t) a2 )r|ft
t

L\* 1
=N log(1+h—) —(rB+St,u+§Stcrz)T
t

The last equation is due to the fact that the random variable S(t)o(W(¢47) — W ) is conditionally
normally distributed with mean 0 and variance S(t, 02 )t.

Thus
P (/LHT(ht), Se—h <| ft)) <a

< Nlo (1+L)+—(rB+S +18.0%)T
_ g 0] th T3 ot

133



British Journal of Mathematics & Computer Science, 1(3): 129-140, 2011

=L <h(t) [exp ((rB(t) + Seu + %Staz) T+ N1 (a)Stcr\/?) - 1]+,

which implies

Q¥ =hi [exp ((rB(t) + Seu + %Stdz) T+ N_l(a)sto-\/;) - 1]+ :

Therefore,
+
VaR®® = Q% =h [1 —exp ((rB(t) + S+ %S(t)az) T+ N‘l(a)S(t)a\/?)] )
Similarly,
E | (6~ Aese 02,50 o, s oo

(rB(t) +S.u+ éS(t)az) T+ S,o(w(t+1) —w(t))

— S
= htE 1- exp % Sto(w(t+1)-w(t)) |ft

-1
ooV <N a) ]
1 N~1@ g x—0 /5e7)
= h$ [a —exp ((rB(t) + Seu + ;Stﬂ) ‘L') I, e <_ @) dx]
= hi[a — exp((rB(t) + S;w)T)N(N~1(a) — 0./S.7)] .
In particular,
0 < V,R®® < TCEX® < hi and V,R*® = TCEX® = 0.
We seek the optimal asset and liability allocation that maximizes (over admissible {C;.L;}) the
expected utility of terminal wealth at time T and liability over the entire horizon [0, T], for a risk
averse institution that limits its risk by imposing an upper bound on the TCE.

In mathematical terms the stochastic asset-liability control problem with no transaction under a

TCE constraint is

Maxc )es E(U(hf)), (18)
subject to the wealth process

h{ = hgexp f; (rB(s) +uS(s) + %025(5)) ds + fOtS(s)adW(s)

log (%) - (rB(t) + uS(t) + %S(t)crz)‘r +N(N1(a)S(D)ovT <0, and the

TCE constraint for fixed At > 0 given by

TCEf < p(h.t),Vte [0,1] (19)
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where

p(Spt) = 1 — exp ((rB(t) +uS() + 250)0?) T+ NN (@)S@)ovT )

and
e
p(Spt) =1—exp((rB(®) + S;)7) N(NMT)J@
With probability 1 — g and A = 0, we have h(t) = B(t)S(t) or S(t) = %‘ This is based on the

classical function which implies that price S(t) of the risky asset equals the ratio of the wealth
process h(t) to the price of bond B(t).

Applying the TCE constraint while maximizing the institution’s logarithmic utility over asset-
liabilities throughout the investment horizon and over the terminal wealth, we have;

Maxc e E(U(RY)),

subject to the wealth process

h(s) h(s) t h(s)
hf = hoexpf (rB(s) +,uB(":) += ZB(Z))d s+ J; B(S) adW (s)

_ __TEC (ni ) h®) | 1h(®) 1 h(t)
log (1 " Boso ) ( BO+rgot 250 )T +log N(N (@) g5 oVT <0
(20)

3 The optimal price

Let z, = C(t) — L(t) be the value of the net assets at the end of period t (savings). Consider the
institution’s economy at time t with function over the net assets given by Cochrane (2001):

V(z¢, 2e41) = V(2) + Ec[V(2e41)], (21

where E, is the conditional expectation operator over future states at time t + 1. If we consider the
liability factor ¥ and a measure of the institution’s impatience to invest, 3, (that is f is the relative
risk premium coefficient),we may write

E [V(ze4 )] =9 + BE [V (2, 2e41)]- (22)
Equation (21) now becomes:
9+V
V(2o 2i0) = 200 (23)

It has been shown in Osu et al. (2011) that when expressed in terms of cumulative distribution of
z;(t), (23) becomes

—(1+6)

U(z) = 24
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U(z) :gforz > 0.

Equation (24) is a power law distribution of aggregate cash flow between an institution and its
propensity to invest. It implies a relation between the rank of an institution in the wealth hierarchy
and its wealth. Figures 1 and 2 in the appendix show an institution’s investment policy with or
without transaction cost.

Put y = (1 + &) an arbitrary parameter § > 0 and define the power utility function

1+

D)
U(z) = forz = 0.

2
1-8
The parameter S is called the relative risk premium coefficient. The objective of the institution is
to choose an allocation of his wealth so as to maximize the expected utility of his terminal wealth,
ie.,
V(t,x) = SUPseq2 E n[U)].

The HJIB equation associated with this problem is

Z—‘:(t, x) + sup L*w(t,x) = 0, (25)
SERZ

Where L* is the second order linear operator:

u = - w 1.2 229w
L*w(t,x) = (r+ (u—r)n)h o (t,x)+20 uh e (t,x)

From (25) we see that
-y -y
Ecx[UXD] = 15 Eea [u(X0)] and V(e,x) = T3V (6, 1).

Set h(t) = V(t, 1), and plug the above separability property of V in (25) to get

0=~h—ysup [r+(,u—r)v+302u2(r+1)] , (26)
SERZ 2
So that
r_ (r-p)?
B= 1+ Oh[r+ 5] @7
Where the maximizer is
="
U= Gz (28)

Since V(T,.) = U(z), we seek for a function h satisfying (28) the differential equation together
with boundary condition A(T) = 1. This allows us to select a unique candidate for the function h

thus;
h(t) = eb? (29)
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with
(r-w)?
(6+2)02

b:=(1+5)[r+

e

|.e=7-¢ (30)

)
‘ h(t) is a classical solution of the HIB .

Therefore, the function (t, z) — s

—(1+98)
We now specialize our model by assuming that u(h) = L -y for some > 0. In the absence of
a TCE constraint, we have;
—(146)

V(ht) =2 e 31)
where b is as in (30) and

A  ry

$Stht) = 55— (32)

Using (11) and (30), the terminal wealth A of an institution is in this case log normally
distributed as

r-w?
hS = hoe<(1+6)[r+(6+2)02])r (33)
with mean
r-w?
hoe(”wmaz)T (34)

and standard deviation

(r-mw? (r-m?
hoe(”(mz)aZ)T1 ’ e — 1. (35)

4 Conclusion

z—(+

The U(t,z) = F

constant process as in (32).

b))
h(t), and the optimal asset-liability control allocation policy is given by the

The $(h,t) here represents the price (the value) of the institution asset or liability depending
whetherr > p,r <porr =pu.

Given an upper and a lower bound on the fraction S(t), the price allocation of the asset:
S7(Z,t) <S(t) <S*(Z,¢v),

we can verify using the method in Couco et al. (2008) and Akume et al. (2009, 2010) that
h(t) = S(t)B(t) is quadratic and satisfies the upper and lower bound such that

St(Z,t) =
9VT + N"1(a) + \/(19\/? + N‘l(cr))2 -2 (log (1 —a —Ti%) +7rBT+ 07+ ;N‘Z(a’)). (36)
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APPENDIX
A
3
wn < h(f] =
§ 2 (1— A)S(t)B(t)
o
o
=
s
o= 2+8) )
= —— ' £=09,6=12
r(t) = (1— 2)s(t) + B(z)
z—i'_+r5‘fl
= 'B=0.2,6 =202
0 >
0 0.5 1 t

Fig. 1. The institutions Asset — liability over time and the wealth process when A # 0.The additive
wealth decreases with different values of (0 <A<1) while the multiplicative wealth is greater than
zerofor A #1
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Wealth process

h(t) =5(t) + B(1)

< h(t) =S5(£)B(t)
3—5:‘_+r5“:'
[ — —
= B=0948=12
—(2+8]

F4

! — —
5 F=02,6=202

0 0.5 1

~+V

Fig. 2. The institution Asset — liability over time and the wealth process when A = 0. The additive
wealth increases with time. The multiplicative wealth is zero for S, = B, =0
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