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Abstract 
Among Cayley graphs on the symmetric group, the pancake graph is one as a viable 

interconnection scheme for parallel computers, which has been examined by a number of 

researchers. The pancake was proposed as alternatives to the hypercube for interconnecting 

processors in parallel computers. Some good and attractive properties of this interconnection 

network include: vertex symmetry, small degree, a sub-logarithmic diameter, extendability, and 

high connectivity (robustness), easy routing, and regularity of topology, fault tolerance, 

extensibility and embeddability of other topologies. In this paper, we present the many-to-one 

dilation 5 embedding of n-dimensional crossed hypercube into n-dimensional pancake patients. 

These predictors, however, need further work to validate reliability. 
Keywords: Cayley graph; embedding, crossed hypercube networks; pancake networks; dilation. 

 

 

1 INTRODUCTION 
 

The study of graph embedding arises naturally in a number of computational problems: portability 

of algorithms across various parallel architectures, layout of circuits in VLSI. Akers and 

Krishnamurthy (1989) proposed the pancake as alternative to the hypercube and their variations 

for interconnecting processors in parallel computers.  

 

This network has desirable proprieties: Small diameter and fixed degree, (n-1) regular, high 

connectivity, vertex symmetry, Hamiltonian, fault tolerance, extensibility, pancyclicity and 

embeddability of other topologies (Akers and Krishnamurthy, 1989; Kanevsky and Feng, 1995; 

Hung et al., 2003; Heydari and Sudborough, 1997; Rowley and Bose, 1998; Hsieh et al., 1998), 

Hsieh and Chen, 2004), Hsieh and Lee, 2009, 2010, Hsieh and Chang, 2006;  Hwang and Chen, 

2000). The embedding capabilities are important in evaluating an interconnection network. The 

embedding of the guest graph G into host graph H is a mapping from each vertex of G to one 
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vertex of H and mapping each edge of G to one path of H. Graph embedding is useful because an 

algorithm designed for H can be applied to G directly (Bouabdallah et al., 1998; Sengupta, 2003; 

Menn and Somani, 1992, Fan, 2002; Qiu, 1992; Fang and Hsu, 2000; Hsieh et al., 1999; Rowley 

and Bose, 1993, Chang et al., 2000; Lin et al., 2008, 2010; Femmam et al., 2012). To compare 

with crossed hypercube, the pancake graph offers good and simple simulations of other 

interconnection networks (Miller et al., 1994; Senoussi and Lavault, 1997; Hung et al., 2002). 

 

The paper is organized as follows: In the preliminaries we introduce some definitions and 

notations, including the definition and proprieties of crossed hypercube and pancake network. In 

section 3 we present an algorithm of many-to-one embedding crossed hypercube into pancake. In 

the section 4 we show that a dilation of many-to-one embedding of n-dimensional crossed 

hypercube embedding into pancake of dimension n is equal to 5. Finally, we give our conclusion 

in section 5. 

 

2 PRELIMINARIES THEORY ANALYSIS 

 

2.1 Definition 1 Construction 
 

The n-dimensional hypercube Qn and the crossed hypercube CQn = (V,U) have a same set of 

vertices V. We represent the address of each vertex in Qn (CQn) as a binary string of length n. In 

such away, we don’t distinguish between vertices and their binary address. In Qn two vertices are 

adjacent if and only if, their binary labels differ only in one bit position. For the CQn n-

dimensional crossed hypercube, adjacency requirements are little more involved. 

 

Definition: Two binary strings x=x1x0 and y=y1y0 of length two are said pair-related if and only If, 

(x, y) Є {(00,00), (10,10), (01,11), (11,01)}. 

 

The n-dimensional crossed hypercube CQn is recursively defined as follows: CQ1 is the complete 

graph based on two vertices labeled 0 and 1 (Efe, K. 1991, Efe, K. 1992, Aschheim et al., 2012). 

CQn consists of two subcubes 0CQn-1 and 1CQn-1 the most significant bit of the labels of the 

vertices in 0CQn-1 (1CQn-1) is 0(1).  

 

U is the set of vertices u=un-1un-2….u1u0 Є 0CQn-1 with un-1=0 and v=vn-1vn-2….v1v0 Є 1CQn-1 with 

vn-1=1 are joined by an edge in CQn if and only if: 

 

                                un-2= vn-2               if n is even                              (1) 

                                (u2i+1u2i, u2i+1u2i)   are pair related 

 

Examples of crossed hypercube for n=1, 2, 3 are given in Figure 1. 

 

The n-dimensional crossed hypercube CQn as an alternative to the hypercube has the same number 

of vertices V and degree as the n-dimensional hypercube. The crossed hypercube is one of the 

variations of hypercube which is derived with some twisted edges. Due to these twisted edges, the 

diameter of CQn is only half of the hypercube one. Nice proprieties include relatively small 

degree, embedding capabilities, scalability, robustness and the fault-tolerant of hamiltonicity of 

CQn (Huang et al., 2000; Chang et al., 2000; Kulasinghe and Bettayeb, 1995b; Yang et al., 2003; 

Hsieh et al., 1999). The multiply-twisted hypercube graph is not vertex-transitive for n ≥ 5 

(Kulasinghe and Bettayeb, 1995a). 



 

 

2.2 Definition 2 Construction
 

Cayley graphs were originally proposed as a generic theoretic model for analyzing symmetric 

interconnection network. The most notable feature of Cayley graph is their universality. The 

Cayley graph represents a class of high performance interconnection network with a small degree 

and diameter, good connectivity and simple routing algorithms. The pancake is one o

graph. 

 

Let  I=(1,2,3,…,n), p= (p1,p2,…..p

A pancake graph Gn=(Pn,En) of n

                                        

and  

En={((p1, p

pn))|(p1,p2,……..pn

 

In other words, the set of Pn of all permutations constitutes the nodes of the vertices of 

 

 

Fig. 

 

Two nodes u and v are joined by an (undirected) edge if and only if, the permutation 

corresponding to the node v can be obtained from 

Since for each permutation we can flip any number of objects between first and j

≤ n, Gn is a (n-1) regular graph, |

given in Figure 2 (a) and Figure 

 

The pancake graphs proposed by Akers and Krishnamurthy (

an important family of interconnection networks. Some interesting properties of the pancake are 

shown in (Bouabdallah et al., 1998
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,…..pn), pi Є I and   pi≠ pj  for i≠j, where p is the permutation of 

n dimensions is defined as follows: 

                                        Pn={(p1, p2...pn)| pi Є I, pi≠pj for i≠j}                                     

 

, p2,……..pj-1, pj, pj+1,………, pn),(pj, pj-1,…………, p2, p1, pj+1
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of all permutations constitutes the nodes of the vertices of Gn.

 

Fig. 1: Crossed hypercube for n=1, 2, 3 

are joined by an (undirected) edge if and only if, the permutation 

can be obtained from u by flipping the object in positions 1 through 

Since for each permutation we can flip any number of objects between first and j
th

 posit

1) regular graph, |Pn|= n!, | En |= (n-1)n!/2. Examples of pancake for n=2, 3, 4

Figure 2 (b). 
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Cayley graphs were originally proposed as a generic theoretic model for analyzing symmetric 
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Cayley graph represents a class of high performance interconnection network with a small degree 

f the Cayley 

is the permutation of I. 

                                     (2) 

1,………..,                         

                                                                        (3) 

n. 

are joined by an (undirected) edge if and only if, the permutation 

through j. 

positions, 2≤ j 

2, 3, 4 are 

Krishnamurthy, 1989) are 

an important family of interconnection networks. Some interesting properties of the pancake are 

). One of the main proprieties are their symmetric, it is built 



 

using Cayley groups with simple routing algorithms. Panc

features, among their hierarchical, maximally fault

Krishnamurthy, 1989; Kanevsky

2000; Lin et al., 2008), have a small diam

 

Fig. 2 (a): Example of 

 

The graph Gn is made of n copies of 

as a super node. It follows that G

((t,p2,p3,…..,pn-1,s), (s,pn-1,…..,p2

(Kanevsky and Feng, 1995). Gn

edges as shown in Figure 3. 

 

Fig. 2 (b): Example of 
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using Cayley groups with simple routing algorithms. Pancake graphs have many other attractive 

features, among their hierarchical, maximally fault-tolerant, Hamiltonian (Akers and 

Kanevsky and Feng, 1995; Qiu, 1992; Qiu et al., 1991; Hwang and 

, have a small diameter (Morales and Sudborough, 1996). 

 
          

2 (a): Example of n-pancake graphs n=2, 3 

is made of n copies of Gn-1 namely Gn [n, k] for 1≤ k ≤ n. Considering each

Gn[n,s], Gn[n,t] are connected by a collection of edges of the form 

2,t)) thus, there are  (n-2)! edges connecting Gn[n,s] and

n is a complete graph on the super nodes connected by 

 
 

2 (b): Example of n-pancake graphs n= 4 
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ake graphs have many other attractive 

Akers and 

and Chen, 

. Considering each Gn [n, k] 

connected by a collection of edges of the form 

and Gn[n,t] 

is a complete graph on the super nodes connected by the super 



 

 

2.3 Definition 3 construction
 
Let G and H two simple undirected graphs. An embedding of the graph 

injective mapping f from the vertices of 

the maximum distance between f

 

2.4 Notations 
 
Crossed hypercube of n dimensions

edges.  

 

Pancake of n dimensions denoted by 

 

A Є V such that A=a1a2a3……..a

U1 ⊂ U as u Є E1, such that u=

A Є V, A=a1a2a3…..an-4.an-3an-2an

U2 ⊂ U as u Є E2, u = (A,B) such that

X=x1x2x3s1s2..….sn-l, such that Suffix 

��
′

 ⊂ En is a subset of paths where all paths (

��
′′ ⊂ Pn is a subset of Pn such that 

node G4 is equal to l =(n-2)/2, for 

��
′′⊂En is a subset of paths where all paths (

��
′′. 
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Fig. 3: Recursive structure of G4 

 

Definition 3 construction 

two simple undirected graphs. An embedding of the graph G into the graph 

from the vertices of G to the vertices of H. The dilation of the embedding is 

the maximum distance between f(x) and f(y) taken over all edges (x, y) of G. 

dimensions denoted by CQn=(V,U), with V set of vertices and 

denoted by Gn=(Pn,En), with Pn set of vertices and En set of edges. 

……..an-3an-2an-1an=Pref.an-2an-1an, where Pref=a1a2a3……..an-3. 

u=(A,B) with A and B Є V. 

n-1an=Pref.an-4.an-3an-2an-1an, where Pref=a1a2a3……..an-5. 

such that A and B Є V. ��
′
 ⊂ Pn is a subset of Pn as X Є �

Suffix =s1s2…….sn-l and l = (n-2)/2, for n > 3.  

is a subset of paths where all paths (X,Y) beginning by X and ending by Y with (X,Y) 

such that X Є ��
′′ and X=x1x2x3x4s1s2..….sn-l, such that the number of super 

for n > 4,  as Suffix = s1s2..….sn-l.  

is a subset of paths where all paths (X,Y) beginning by X and ending by Y, with (
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into the graph H is an 

The dilation of the embedding is 

set of vertices and U set of 

set of edges.  

.  

.  

��
′ , where 

X,Y) Є ��
′ .  

, such that the number of super 

with (X ,Y) Є 
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   Suffix1(X) is a function which extracts the n-3 characters from a string X starting with the 

character of the lowest weight. 

 

 Suffix2(X) is a function which extracts the n-4 characters from a string X starting with the 

character of the lowest weight. 

 

3 EMBEDDING n-DIMENSIONAL CROSSED HYPERCUBE 

GRAPH INTO n-DIMENSIONAL PANCAKE GRAPH 
 

In this section, we present a new function, the many-to-one embedding n-dimensional crossed 

hypercube graph denoted by CQn into n-dimensional pancake graph denoted by Gn.  
 

The main steps of embedding function are as follows: 

 

1. Find the first node of the crossed hypercube and the first node of the pancake. Example 000 

of CQ3 and 123 of G3. 

2. Embedding vertex of crossed hypercube of n dimensions into pancake of n dimensions using 

the Embed_node(node) algorithm. 

 

Embedding edges of crossed hypercube of n dimensions into the path of the pancake of n 

dimensions using the Embed_edge(nodedep,nodearr) algorithm. 

 

3.1 Embed_node(node) Algorithm 
 

Embed_node(node) algorithm is done in the following way: 

 
Case where n=3. Embedding crossed hypercube of 3 dimensions into pancake of 3 dimensions as 

depicted in Figure 4 and Figure 5. 

Generally Embed_node(A) algorithm applies all actions specified in the TABLE 1. 

 

 
 

Fig. 4: Crossed hypercube and pancake of 3 dimensions  



 

Fig. 5: The embedding graph of 
 

Table 1:       Embed_node(A) algorithm for

The variable Sufi with (i=1…4) is 

(k=n,1…3).   

 

Case where n =4. The embedding nodes of 

recursively by two copies of CQ

1(1CQ3). The G4 is made recursively by four copies of 

this case two copies of G4[4,k], for 

prefixing by 0(0CQ3) and the second component

The embedding is done by using the basic function of embedding of 

Figure 6. The embedding is done by using the rules specified in TABLE 2.

 

Nodes of CQn prefixed  

by 00 

Nodes of

Gn

00Pref000 x1

00Pref001 x2

00Pref010 x1

00Pref011 x3

00Pref100 x3

00Pref101 x3

00Pref110 x3

00Pref111 x2

Nodes of CQn prefixed  

by 01 

Nodes of

Gn

01Pref000 x3

01Pref001 x3

01Pref010 x3

01Pref011 x1

01Pref100 x1

01Pref101 x1

01Pref110 x1

01Pref111 x3
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5: The embedding graph of CQ3 into G3 

Embed_node(A) algorithm for A=A1PREFAN-2AN-1AN, where A1=00,01,10,11.

 

 

1…4) is Suffix1(X), where X Є Pi, such that Gn(n,k)=(Pi, E

. The embedding nodes of CQ4 in G4 are produced as follows: CQ4 

CQ3, one copy is prefixed by 0(0 CQ3) and the other one prefixed by 

is made recursively by four copies of G3 named G4[4,k] for k=1,4. We used in 

], for k=1,4. The first is G4[4,4] used to embed all nodes of 

second component G4[4,1] to embed all nodes prefixing by 1(1

The embedding is done by using the basic function of embedding of CQ3 into G3 as depicted in 

The embedding is done by using the rules specified in TABLE 2.  

 

Nodes of 1st 

n[n,n] 

Nodes of CQn prefixed 

by 10 

Nodes of

2
nd

  Gn[

1x2x3Suf1 10Pref000 x3x2x1Suf

2x1x3Suf1 10Pref001 x2x3x1Suf

1x2x3Suf1 10Pref010 x3x2x1Suf

3x1x2Suf1 10Pref011 x1x3x2Suf

3x2x1Suf1 10Pref100 x1x2x3Suf

3x1x2Suf1 10Pref101 x1x3x2Suf

3x2x1Suf1 10Pref110 x1x2x3Suf

2x1x3Suf1 10Pref111 x2x3x1Suf

Nodes of 3
rd

  

n[n,3] 

Nodes of CQn prefixed 

by 11 

Nodes of

4th Gn[n,

3x1x2Suf3 11Pref000 x2x1x3Suf

3x1x2Suf3 11Pref001 x1x2x3Suf

3x1x2Suf3 11Pref010 x2x1x3Suf

1x3x2Suf3 11Pref011 x2x1x3Suf

1x3x2Suf3 11Pref100 x1x2x3Suf

1x3x2Suf3 11Pref101 x2x1x3Suf

1x3x2Suf3 11Pref110 x1x2x3Suf

3x1x2Suf3 11Pref111 x1x2x3Suf
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1=00,01,10,11. 

, E), where 

4 is made 

) and the other one prefixed by 

We used in 

[4,4] used to embed all nodes of CQ4 

[4,1] to embed all nodes prefixing by 1(1CQ3). 

as depicted in 

Nodes of 

[n,1] 

Suf2 

Suf2 

Suf2 

Suf2 

Suf2 

Suf2 

Suf2 

Suf2 

Nodes of 

n,2] 

Suf4 

Suf4 

Suf4 

Suf4 

Suf4 

Suf4 

Suf4 

Suf4 



 

 

 

 

 

 

 

British Journal of Mathematics & Computer Science, 2(1): 1-20, 2012 

8 

 

Table 2: Embedding all nodes of CQ4 into G4 

 

 
 

Fig. 6: Embedding graph of CQ5 into G5 

 

The case where n=5. The embedded nodes of CQ5 are produced as follows: CQ5 is made 

recursively by prefixing the two copies of CQ4 one by 0(0 CQ4) and the other by 1(1 CQ4), in 

other words, 00CQ3, 01CQ3, 10CQ3, 11CQ3. The G4 is made recursively by four copies of G3 

named G4[4,k], where k=1,4. The first component is G4[4,4] used for embedding nodes of CQ5 

prefixing by 00CQ3, the second G4[4,1] for embedding all nodes 01CQ3, the third component 

G4[4,3] and the last component G4[4,2] are used for embedding nodes of 11CQ3 as shown in 

Figure 7. The embedding is done by using the rules specified in TABLE 3. 

 

Table 3: Embedding all nodes of CQ5 into G5 

 

The case for n > 5. The crossed hypercube of n dimensions is produced by the composition of 

two copies of crossed hypercube of (n-1)-dimensions. The first is prefixed by 0(0CQn-1) and the 

second is prefixed by 1(1CQn-1). The pancake of n-1dimensions is made by i copies of Gn-1[n-1,k], 

0CQ3 G4[4,4] 1CQ3 G4[4,1] 

0000 x1x2x3x4 1000 x4x3x2x1 

0001 x2x1x3x4 1001 x3x4x2x1 

0010 x1x2x3x4 1010 x4x3x2x1 

0011 x3x1x2x4 1011 x2x4x3x1 

0100 x3x2x1x4 1100 x2x3x4x1 

0101 x3x1x2x4 1101 x2x4x3x1 

0110 x3x2x1x4 1110 x2x3x4x1 

0111 x2x1x3x4 1111 x3x4x2x1 

00CQ3 G4[4,4] 10CQ3 G4[4,1] 01CQ3 G4[4,3] 11CQ3 G4[4,2] 

00000 x1x2x3x4 10000 x4x3x2x1 01000 x3x4x1x2 11000 x2x1x4x3 

00001 x2x1x3x4 10001 x3x4x2x1 01001 x4x3x1x2 11001 x1x2x4x3 

00010 x1x2x3x4 10010 x4x3x2x1 01010 x3x4x1x2 11010 x2x1x4x3 

00011 x3x1x2x4 10011 x2x4x3x1 01011 x1x3x2x4 11011 x4x2x1x3 

00100 x3x2x1x4 10100 x2x3x4x1 01100 x1x4x3x2 11100 x4x1x2x3 

00101 x3x1x2x4 10101 x2x4x3x1 01101 x1x3x4x2 11101 x4x2x1x3 

00110 x3x2x1x4 10110 x2x3x4x1 01110 x1x4x1x2 11110 x4x1x2x3 

00111 x2x1x3x4 10111 x3x4x2x1 01111 x4x3x1x2 11111 x1x2x4x3 
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for k=1,i. In other words, I super nodes containing 2
l
 components G4, with i = 2 if n is even, i=4 if 

n is odd and l = (n-1)/2. There are two stated situations: the first one is when n is even, we use two 

components: the super node Gn-1[n-1, n-1] and the super node Gn-1[n-1, 1], the first for embedding 

all nodes of 0CQn-1 and the second one for embedding all nodes of 1CQn-1. The second situation is 

when n is odd or n=2m+1 (m Є �), the CQN nodes are 0CQ2m, 1CQ2m. For N=2m the CQN nodes 

are 0CQN, 1CQN, that is to say 00CQN-1, 01CQN-1 and 10CQN-1, 11CQN-1. In other words, we use 4 

super nodes GN-1[N-1,N-1], GN-1[N-1,1], Gn-1[N-1,2], GN-1[N-1,3].  

 

The first node for embedding all nodes of 00CQN-1, the second one for embedding all nodes of 

10CQN-1, the third one for embedding all nodes of 11CQN-1 and the last node for embedding all 

nodes of 01CQN-1 by using the rules specified in TABLE 4. 

 

 
 

Fig. 7: Embedding graph of CQ5 into G5 

 

3.2 Embed_edge(nodedep_nodearr) Algorithm 
 

The Embed_edge(nodedep,nodearr) algorithm is given as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

Begin; 

S1:=Suffix1(nodedep); S2:=Suffix1(nodearr); S3:=Suffix2(nodedep); S4:=Suffix2(nodearr); 

If  S1=S2 then Embed1_edge(nodedep,nodearr) 

Else 

        If  S3=S4  then Embed2_edge(nodedep,nodearr)    

        Else 

 Embed3_edge(nodedep,nodarr) 

        Endif; 

    Endif; 

End; 
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Table 4: Embedding all nodes of CQn in G5 for n>5 

 

 

3.3 Embed1_edge(nodedep, nodearr) Algorithm 

 

The Embed1_edge(nodedep, nodearr) algorithm is used when the  paths are  in the same G3 of a 

super node. This procedure applies exactly the different cases outlined in TABLE 5, for A= 00 or 

10 and the symmetric paths are shown in TABLE 6 for A= 01 or 11. Note that the function Suffix 

is Suffix2(X). 

 

3.4 Embed2_edge(nodedep,nodearr) Algorithm 
 

This procedure is used when the paths are in the same G4 of a super node. The 

Embed2_edge(nodedep,nodearr) algorithm realizes the embedding of the edge of crossed 

hypercube into pancake, if the suffix of nodedep and the suffix of nodearr differ exactly in the 

fourth position.  

 

Four cases arise in this situation. In the first case, the edge of the crossed hypercube is Pref00an-

2an-1an-Pref01an-2an-1an, in the second is Pref00an-2an-1an-Pref10an-2an-1an, in the third case is 

Pref01an-2an-1an-Pref11an-2an-1an, and finally in the last case is Pref10an-2an-1an-Pref11an-2an-1an. 

The Embed2_edge(nodedep,nodearr) algorithm applies exactly the actions outlined in TABLE 7. 

 

 

 

 

 

 

 

 

APref00CQ3 Gn-1[n-1,n-1] APref10CQ3 Gn-1[n-1,1] 

APref000000 x1x2x3x4suf1 APref100000 x4x3x2x1Suf2 

APref000001 x2x1x3x4suf1 APref100001 x3x4x2x1Suf2 

APref000010 x1x2x3x4Suf1 APref100010 x4x3x2x1Suf2 

APref000011 x3x1x2x4suf1 APref100011 x2x4x3x1Suf2 

APref000100 x3x2x1x4suf1 APref100100 x2x3x4x1Suf2 

APref000101 x3x1x2x4suf1 APref100101 x2x4x3x1Suf2 

APref000110 x3x2x1x4suf1 APref100110 x2x3x4x1Suf2 

APref000111 x2x1x3x4suf1 APref100111 x3x4x2x1Suf2 

APref01CQ3 Gn-1[n-1,3] APref11CQ3 Gn-1[n-1,2] 

APref010000 x3x4x1x2Suf3 APref110000 x2x1x4x3Suf4 

APref010001 x4x3x1x2Suf3 APref110001 x1x2x4x3Suf4 

APref010010 x3x4x1x2Suf3 APref110010 x2x1x4x3Suf4 

APref010011 x1x3x2x4Suf3 APref110011 x4x2x1x3Suf4 

APref010100 x1x4x3x2Suf3 APref110100 x4x1x2x3Suf4 

APref010101 x1x3x4x2Suf3 APref110101 x4x2x1x3Suf4 

APref010110 x1x4x1x2Suf3 APref110110 x4x1x2x3Suf4 

APref010111 x4x3x1x2Suf3 APref110111 x1x2x4x3Suf4 
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Table 5: Embedding edges with label format 00Pref x1x2x3-00Pref y1y2y3  

of crossed hypercube into pancake 

 

Table 6: Embedding edges with label format 10Pref x1x2x3-10Pref y1y2y3 

of crossed hypercube into pancake 

 

 

 

 

 

 

 

 

 

 

Crossed hypercube edge Pancake path( S1=Suffix) Dilation  

APref000-APref001 x1x2x3x4Suffix-x2x1x3x4Suffix 1 

APref000-APref010 x1x2x3x4Suffix-x1x2x3x4Suffix 1 

APref000-APref100 x1x2x3x4Suffix-x3x2x1x4Suffix 1 

APref001-APref011 x2x1x3x4Suffix-x3x1x2x4Suffix 1 

APref001-APref111 x2x1x3x4Suffix-x2x1x3x4Suffix 1 

APref010-APref011 x1x2x3x4Suffix-x2x1x3x4Suffix- x3x1x2x4Suffix 2 

APref010-APref110 x1x2x3x4Suffix-x3x2x1x4Suffix 1 

APref011-APref101 x3x1x2x4Suffix-x3x1x2x4Suffix 1 

APref100-APref101 x3x2x1x4Suffix-x1x2x3x4Suffix- 

x2x1x3x4Suffix-x3x1x2x4Suffix 

3 

APref101-APref111 x3x1x2x4Suffix-x2x1x3x4Suffix 1 

APref110-APref111 x3x2x1x4Suffix-x1x2x3x4Suffix-x2x1x3x4Suffix 2 

Crossed hypercube edge Pancake path ( S1=x4Suffix) Dilation 

APref000-APref001 x1x3x2x4Suffix-x3x1x2x4Suffix 1 

APref000-APref010 x1x3x2x4Suffix-x1x3x2x4Suffix 1 

APref000-APref100 x1x3x2x4Suffix-x2x3x1x4Suffix 1 

APref001-APref011 x3x1x2x4Suffix-x2x1x3x4Suffix 1 

APref001-APref111 x1x3x2x4Suffix-x1x3x2x4Suffix 1 

APref010-APref011 x1x3x2x4Suffix-x3x1x2x4Suffix- 

x2x1x3x4Suffix 

2 

APref010-APref110 x1x3x2x4Suffix-x2x3x1x4Suffix 1 

APref011-APref101 x2x1x3x4Suffix-x2x1x3x4Suffix 1 

APref100-APref101 x2x3x1x4Suffix-x1x3x2x4Suffix-

x3x1x2x4Suffix-x2x1x3x4Suffix 

3 

APref101-APref111 x2x1x3x4Suffix-x1x3x2x4Suffix 1 

APref110-APref111 x2x3x1x4Suffix-x1x3x2x4Suffix- 

x1x3x2x4Suffix 

2 
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Table 7: Cases of embedding CQn into Gn, when the path is in the same G4  

of any super node 

 

Crossed hypercube edge Pancake path Dilation 

APref00000-BPref00000 

APref00010-BPref00010 

x1x2x3x4x5Suffix-x3x2x1x4x5Suffix 1 

APref00001-BPref00011 

APref00101-BPref00111 

x1x2x3x4x5Suffix-x2x3x1x4x5Suffix-x5x4x1x3x2Suffix-

x4x5x1x3x2Suffix- x1x5x4x3x2Suffix 

4 

APref00100-BPref00100 

APref00110-BPref00110 

x1x2x3x4x5Suffix-x3x2x1x4x5Suffix-x5x4x1x2x3Suffix-

x1x4x5x2x3Suffix 

3 

APref00011-BPref00001 

APref00111-BPref00101 

x1x2x3x4x5Suffix-x2x1x3x4x5Suffix-x5x4x3x1x2Suffix-

x3x4x5x1x2Suffix-x1x5x4x3x2Suffix 

4 

 

APref01000-BPref01000 

APref01010-BPref01010 

x1x2x3x4x5Suffix-x4x3x2x1x5Suffix-x5x1x2x3x4Suffix 2 

APref01001-BPref01011 

APref01101-BPref01111 

x1x2x3x4x5Suffix-x2x1x3x4x5Suffix-x4x3x1x2x5Suffix-

x5x2x1x3x4Suffix- x2x5x1x3x4Suffix 

4 

APref01100-BPref01100 

APref01110-BPref01110 

x1x2x3x4x5Suffix-x4x3x2x1x5Suffix-x5x1x2x3x4Suffix-

x4x3x2x1x5Suffix 

3 

APref01011-BPref01001 

APref01111-BPref01101 

x1x2x3x4x5Suffix-x2x1x3x4x5Suffix- x4x3x1x2x5Suffix-

x5x2x1x3x4Suffix-x3x1x2x5x4Suffix 

4 

 

APref10000-BPref10000 

APref10010-BPref10010 

x1x2x3x4x5Suffix-x3x2x1x4x5Suffix-x5x4x1x2x3Suffix-

x1x4x5x2x3Suffix 

3 

APref10001-BPref10011 

APref10101-BPref10111 

x1x2x3x4x5Suffix-x2x1x3x4x5Suffix-x5x4x3x1x2Suffix-

x3x4x5x1x2Suffix- x4x3x5x1x2Suffix-x4x3x5x1x2Suffix 

5 

APref10100-BPref10100 

APref10110-BPref10110 

x1x2x3x4x5Suffix-x5x4x3x2x1Suffix 1 

APref10011-BPref10001 

APref10111-BPref10101 

x1x2x3x4x5Suffix-x5x4x3x2x1Suffix- 

x4x5x3x2x1Suffixx3x5x4x2x1Suffix-x2x4x5x3x1Suffix-

x4x2x5x3x1Suffix 

5 

 

APref11000-BPref11000 

APref11010-BPref11010 

x1x2x3x4x5Suffix-x4x3x2x1x5Suffix- x2x3x4x1x5Suffix-

x5x1x4x3x2Suffix- x4x1x5x3x2Suffix-x3x5x1x4x2Suffix 

5 

APref11001-BPref11011 

APref11101-BPref11111 

x1x2x3x4x5Suffix-x5x4x3x2x1Suffix- x4x5x3x2x1Suffix-

x2x3x5x4x1Suffix 

3 

APref11100-BPref11100 

APref11110-BPref11110 

x1x2x3x4x5Suffix-x4x3x2x1x5Suffix-x2x3x4x1x5Suffix-

x5x1x4x3x2Suffix-x4x1x5x3x2Suffix-x3x5x1x4x2Suffix 

5 

APref11011-BPref11001 

APref11111-BPref11101 

x1x2x3x4x5Suffix-x5x4x3x2x1Suffix- x4x5x3x2x1Suffix- 

x2x3x5x4x1Suffix 

3 
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Table 8:      Case 1 for A=00 and B=01 

 

 

 

Case Crossed hypercube edge   Pancake path       Dilation 

 Pref00000-Pref01000 

Pref00010-Pref01010 

 

x1x2x3x4Suffix-x3x2x1x4Suffix-

x2x1x4x3Suffix-x2x1x4x3Suffix 

3 

1 Pref00001-Pref01011 

Pref00101-Pref01111 

 

x1x2x3x4Suffix-x2x1x3x4Suffix- 

x4x3x2x1Suffix 

2 

 Pref00100-Pref01100 

Pref00110-Pref01110 

 

x1x2x3x4Suffix-x4x3x2x1Suffix 1 

 Pref00011-Pref01001 

Pref00111-Pref01101 

x1x2x3x4Suffix-x4x3x2x1Suffix- 

x2x3x4x1Suffix 

2 

 Pref00000-Pref10000 

Pref00010-Pref10010 

 

x1x2x3x4Suffix-x4x3x2x1Suffix 1 

2 Pref00001-Pref10011 

Pref00101-Pref10111 

 

x1x2x3x4Suffix-x4x3x2x1Suffix-

x2x3x4x1Suffix-x1x4x3x2Suffix 

3 

 Pref00100-Pref10100 

Pref00110-Pref10110 

 

x1x2x3x4Suffix-x4x3x2x1Suffix-

x3x4x2x1Suffix-x1x2x4x3Suffix 

3 

 Pref00011-Pref10001 

Pref00111-Pref10101 

x1x2x3x4Suffix-x3x2x1x4Suffix-

x4x1x2x3Suffix-x1x4x2x3Suffix 

3 

 

 

 

 

Pref01000-Pref11000                                                               

Pref01010-Pref11010 

x1x2x3x4Suffix-x4x3x2x1Suffix 1 

 Pref01001-Pref11011 

Pref01101-Pref11111 

 

x1x2x3x4Suffix-x4x3x2x1Suffix-

x2x3x4x1Suffix-x1x4x3x2Suffix 

3 

3 Pref01100-Pref11100 

Pref01110-Pref11110 

 

x1x2x3x4Suffix-x4x3x2x1Suffix-

x3x4x2x1Suffix-x1x2x4x3Suffix 

3 

 Pref01011-Pref11001 

Pref01111-Pref11101 

x1x2x3x4Suffix-x3x2x1x4Suffix-

x4x1x2x3Suffix-x1x4x2x3Suffix 

3 

 

 Pref10000-Pref11000 

Pref10010-Pref11010 

 

x1x2x3x4Suffix-x3x2x1x4Suffix-

x2x1x4x3Suffix-x2x1x4x3Suffix 

3 

 Pref10001-Pref11011 

Pref10101-Pref11111 

x1x2x3x4Suffix-x2x1x3x4Suffix- 

x4x3x2x1Suffix 

2 

4 Pref10100-Pref11100 

Pref10110-Pref11110 

x1x2x3x4Suffix-x4x3x2x1Suffix 1 

 Pref10011-Pref11001 

Pref10111-Pref11101 

x1x2x3x4Suffix-x4x3x2x1Suffix- 

x2x3x4x1Suffix 

2 
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Table 9:    Case 2 for A= 00 and B=10 
 

 

Crossed hypercube edge Pancake   path Dilation 

APref00000-BPref00000 

APref00010-BPref00010 

x1x2x3x4x5Suffix-x3x2x1x4x5Suffix- 

x5x4x1x2x3Suffix 

2 

APref00001-BPref00011 

APref00101-BPref00111 

x1x2x3x4x5Suffix-x3x2x1x4x5Suffix-

x5x4x1x2x3Suffix-x1x4x5x2x3Suffix-  

x2x5x4x1x3Suffix 

4 

APref00100-BPref00100 

APref00110-BPref00110 

x1x2x3x4x5Suffix-x5x4x1x2x3Suffix- 

x1x4x5x2x3Suffix 

2 

APref00011-BPref00001 

APref00111-BPref00101 

x1x2x3x4x5Suffix-x5x4x3x2x1Suffix-

x3x4x5x2x1Suffix-x2x5x4x3x1Suffix- 

x4x2x5x3x1Suffix 

4 

 

APref01000-BPref01000 

APref01010-BPref01010 

x1x2x3x4x5Suffix-x4x3x2x1x5Suffix-

x2x3x4x5x1Suffix-x1x5x4x3x2Suffix- 

x3x4x5x1x2Suffix 

4 

APref01001-BPref01011 

APref01101-BPref01111 

x1x2x3x4x5Suffix-x5x4x3x2x1Suffix-

x3x4x5x2x1Suffix-x2x5x4x3x1Suffix 

3 

APref01100-BPref01100 

APref01110-BPref01110 

x1x2x3x4x5Suffix-x2x1x3x4x5Suffix-

x5x4x3x1x2Suffix-x1x3x4x5x2Suffix-

x4x3x1x5x2Suffix-x3x4x1x5x2Suffix 

5 

APref01011-BPref01001 

APref01111-BPref01101 

x1x2x3x4x5Suffix-x3x2x1x4x5Suffix- 

x5x4x1x2x3Suffix-x2x1x4x5x3Suffix-

x1x2x4x5x3Suffix-x4x5x4x1x3Suffix 

3 

 

APref10000-BPref10000 

APref10010-BPref10010 

x1x2x3x4x5Suffix-x5x4x3x2x1Suffix- 

x3x4x5x2x3Suffix 

2 

APref10001-BPref10011 

APref10101-BPref10111 

x1x2x3x4x5Suffix-x2x1x3x4x5Suffix-

x5x4x3x1x2Suffix-x3x4x5x1x2Suffix- 

x4x3x5x1x2Suffix-x5x3x4x1x2Suffix 

5 

APref10100-BPref10100 

APref10110-BPref10110 

x1x2x3x4x5Suffix-x3x2x1x4x5Suffix- 

x5x4x1x2x3Suffix 

2 

APref10011-BPref10001 

APref10111-BPref10101 

x1x2x3x4x5Suffix-x2x1x3x4x5Suffix-

x5x4x3x1x2Suffix-x3x4x5x1x2Suffix-

x1x5x4x3x2Suffix-x5x1x4x3x2Suffix 

5 

 

APref11000-BPref11000 

APref11010-BPref11010 

x1x2x3x4x5Suffix-x4x3x2x1x5Suffix- 

x5x1x2x3x4Suffix-x2x1x5x3x4Suffix- 

 x3x5x1x2x4Suffix 

4 

APref11001-BPref11011 

APref11101-BPref11111 

x1x2x3x4x5Suffix-x3x2x1x4x5Suffix-

x4x1x2x3x5Suffix-x5x3x2x1x4Suffix-

x2x3x5x1x4Suffix 

4 

APref11100-BPref11100 

APref11110-BPref11110 

x1x2x3x4x5Suffix-x4x3x2x1x5Suffix-

x5x1x2x3x4Suffix-x2x1x5x3x4Suffix- 

x3x5x1x2x4Suffix 

4 

APref11011-BPref11001 

APref11111-BPref11101 

x1x2x3x4x5Suffix-x4x3x2x1x5Suffix-

x5x1x2x3x4Suffix 

2 
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3.5 Embed3_edge(nodedep, nodarr) Algorithm 

 

This procedure is used when n>5 and all paths are between two different G4 in the different super 

nodes. 

 

Let A=a1a2 and B=b1b2, where (a1a2, b1b2)=(00,01), (00,10), (01,11), (10,11). For n>5, 

Embed3_edge(nodedep,nodarr) algorithm performs the different actions specified in the four 

stated following cases. Excepting the case when n=6, APref is reduced to 0, BPref is reduced to 1.  

 
For the case n=7, (APref, BPref)=(00,01), (00,10), (01,11), (10,11). 

 

For the sake of simplicity the cases 3 and 4 are not given in the paper. 

 

4 DILATIONS OF MANY-TO-ONE n-DIMENSIONAL 

CROSSED HYPERCUBE EMBEDDED INTO n-

DIMENSIONAL PANCAKE 
 

4.1 Lemma 1 
 

The n-dimensional crossed hypercube C��
′ =(V,U1) has many-to-one dilation 3 embedding into 

��
′ =(��

′ , ��
′ ) for any n>3. 

 

Proof  
We prove this lemma by induction. 

 

Base  

For n = 3, TABLE 1 presents all paths between the embedded nodes of CQ3 into G3 with dilation 

3. 

 

Induction hypothesis  

Suppose that for k ≤ n-1, C�	
�
′  embedding many-to-one dilation 3 into G

’
k-1 is true. Let us now 

prove that is true for k=n.  

We have the following cases: 

 

Case 1: k is even 

 

���
′ =(V,U1) is constructed by two copies of C��
�

′ , one copy is prefixed by 0(0C�	
�
′ ), the 

second one is prefixed by 1(1C�	
�
′ ). All nodes A Є V, such that, A=0Prefan-3an-2an-1= Pref1ak-3ak-

2ak-1 are embedded by Embed_node(A) algorithm as shown in TABLE 4 into the first super node 

or into the projection �	
′ [k,k].  

 

All nodes AЄV, A=1prefak-3ak-2ak-1 or A=Pref2ak-3ak-2ak-1 are embedded into the second super node 

or into the projection �	
′ [k,1] as shown in TABLE 5. That is to say, they are embedded into �	
�

′ .  

However, the dilation of embedding into �	
�
′  is 3 (hypothesis of induction). ▭  
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Case 2: k is odd 

 

Let k=2m+1, where m Є �, and CQn is obtained from two copies of 0C���
′  and 1C���

′ , and 

suppose that for N=2m we have 0C��
′

 and 1C��
′ , that is to say, 00C��
�

′ , 01C��
�
′  and 

10C��
�
′ , 11C��
�

′ .  

The Embed-node(A) algorithm as shown in TABLE 1, embed all nodes A=00PrefaN-3aN-2aN-1 

(AЄV) into the first super node or into the projection ��
′ [N,N], all nodes A=10PrefaN-3aN-2aN-1 into 

��
′ [N,1], all nodes A=01PrefaN-3aN-2aN-1 into ��

′ [N,3], and all nodes A=11PrefaN-3aN-2aN-1 into 

��
′ [N,2]. In other words, we use only four super nodes among the k projections or super nodes. ��

′  

is a (n-1)-dimensional pancake graphs and the embedding many-to-one dilation 3 into ��
′  

(hypothesis of induction). ▭ 

 

4.2 Lemma 2 
 

The n-dimensional crossed hypercube C��
′′=(V,U2) has many-to-one dilation 4 embedding into  

��
′′=(��

′′, ��
′′ ) for any n>4. 

 

Proof 

We use the same method to prove lemma 2, except that the embedding of the edges of C�	
′′  is 

defined in TABLE 7 for the case where k is even and TABLE 7 for the case where k is odd. 

 

Theorem 
The n-dimensional crossed hypercube CQn=(V,U) has many-to-one dilation 5 embedding into 

Gn=(Pn,En) for any n>5. 

 

Proof 
Base: For n = 6, TABLE 9 presents the case of different actions of embedding all edges of CQ6 

into G6 with dilation 5.  

 

For n = 7, TABLE 8, TABLE 9 and include the non given Tables for case 3 and case 4 present the 

different actions of embedding all edges of CQ7 into G7 with dilation 5.  

 

Induction hypothesis 

Assume that this lemma holds for k ≤ n-1. That is CQk-1 embedding many-to-one dilation 5 into 

Gk-1 is true.   

 

Now we prove that this is true for k=n.  

 

Case 1: k is even. There are two sub-cases 

 

Case a  

 
As the crossed hypercube is defined to be CQk=(V,U). Let A and B Є V, where A = 0Prefak-4ak-3ak-

2ak-1=Pref1 ak-4ak-3ak-2ak-1 as Pref1 =0Pref and B = Pref1bk-4bk-3bk-2bk-1. The embedding of (A,B) Є U 

into the first super node or into the projection  Gk[k,k]. All edges (A,B) Є U such that, A=1prefak-

4ak-3ak-2ak-1 or A=Pref2ak-4ak-3ak-2ak-1 where Pref2=1Pref, and the node B=Pref2bk-4bk-3bk-2bk-1 are 

embedded into the second super node or into the projection Gk[k,1] in other words, into Gk-1. 

However, the dilation of embedding into Gk-1 is 5 hypothesis of induction. ▭  
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Case b  

 
As the crossed hypercube is defined to be CQk = (V,U). Let A and BЄV, A=0Prefak-4ak-3ak-2ak-1 or 

A=Pref1 ak-4ak-3ak-2ak-1 as Pref1=0Pref and B=Pref2bk-4bk-3bk-2bk-1. 

 

If we use Embed_node(A) algorithm, all nodes A are embedded into a super node Gk[k,k] and all 

nodes B are embedded into a super node Gk[k,1]. The different edges of CQk are embedded into 

different paths. The first node of every path is embedded into the super node Gk[k,k] and the 

ending node is embedded into the super node Gk[k,1], that is to say, we use the different 

embedding edges outlined in case 1, case 2, cases 3 (not given in the paper) and case 4. In all 

cases the dilation is 5. ▭ 

 

Case 2: k is odd. There are two sub-cases 

 

Case a 

 

Let k = 2m+1, where m Є �, CQk is produced by two copies of 0C��	
′

 and 1C��	
′ . Suppose that 

for N=2k we have 0C��
′ , 1C��

′ , in other words, 00C��
�
′ , 01C��
�

′ , 10C��
�
′  and 11C��
�

′ . Let 

A and B ЄV where A=A1A2, such that A1=(00,01,10,11), A2=PrefaN-4aN-3aN-2aN-1 as Pref1=A1Pref, 

hence, A=Pref1aN-4aN-3aN-2aN-1 and B=Pref1bN-3bN-2bN-1bN. The embedding of (A,B) Є U is into the 

first super node GN[N,N] if A1=00, it is into the second super node GN[N,1] if A1=10, it is into the 

third super node GN[N,3] if A1=01, and it is into the fourth super node GN[N,2] if A1=11. The 

dilation in all super nodes is 5 (hypothesis induction). ▭  

 

Case b 

 
Let A and B Є V, and A=A1A2, B=B1B2 as (A1,B1)=(00,01), (00,10), (01,11), (10,11) and 

A2=Pref1aN-4aN-3aN-2aN-1, B2=Pref1bN-3bN-2bN-1bN. The embedding of (A,B) Є U are into a different 

paths between two super nodes (GN[N,N],GN[N,3]), (GN[N,N],GN[N,1]), (GN[N,3],GN[N,2]), 

(GN[N,1],GN[N,2]). Each super node contains exactly 2l -1
G4. In other words, case 1 or case 2 is 

used, because the first node of the different paths is located in one node of G4 of the super node 

GN[N,N], and the ending node is located in one node of G4 of the super node GN[N,3]. Or for all 

edges of CQN having the first extremity a node prefixed by 00Pref, and the second extremity a 

node prefixed by 01Pref for instance case 1, case 2, case 3 and case 4 (cases 3 and 4 are not given 

in the paper) are used. In all cases the dilation is 5. ▭ 

 

5 CONCLUSION 
 

It is both practically significant and theoretically interesting to investigate the embeddability of 

different architecture into pancake (Miller, Z., et al., 1994, Senoussi, H., Lavault, C., 1997, Hung, 

C.N., et al., 2002). In this paper, the main purpose is the many-to-one 5 dilation embedding of n-

dimensional crossed hypercube into pancake of n dimensions. The study of the dilation of this 

new function many-to-one embedding is explained in three steps. The first step is the embedding 

many-to-one dilation 3 of all edges in paths in the same G3 components of a super node as proved 

by lemma 1. The second step is that for all paths results of many-to-one dilation 4 embedding 

graph are in the same G4 components of a super node, in other words, the path is between two G3 

of the same G4 as proved by lemma 2, and the latter step is the general embedding many-to-one 
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dilation 5 of all edges of the n-dimensional crossed hypercube CQn in the paths between two 

different super nodes.  

 

In the feature of this work, it is more interesting to study the one-to-one embedding case and the 

fault-tolerant embedding of n-dimensional crossed hypercube into n-dimensional pancake graph. 
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