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Abstract

Two methods based on the Galerkin method with Radial basis Functions (RBF) as bases are

applied to solve integro-differential equations (IDEs). In the first approach, direct Galerkin RBF

method, the unknown function of the IDE is approximated by RBFs and then the derivatives of

it are replaced by the derivatives of RBFs. In the second one, indirect Galerkin RBF method, the

derivative of the unknown function is approximated by RBFs and then lower order derivatives and

unknown function itself are computed by integrating of RBFs. Therefore the Galerkin method

is applied to compute these coefficients. Double integrals that appeared in the process, can

be reduced to single integrals by using a formula of iterated integrals. In complicated cases,

single integrals approximated by Legendre-Gauss-Lobatto quadrature. Illustrative examples are

included to demonstrate the validity and applicability of the presented techniques. A comparison

of applying these methods shows the efficiency and high accuracy of the indirect Galerkin RBF

method rather than direct Galerkin RBF method.
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1 Introduction

Integral and integro-differential equations arise from various applications, like physics, engineering,
biology, medicine, economics, potential theory and many others (See [1, 2, 3] and references therein).
In recent years, a lot of attention has been devoted to the study of integro-differential equations
(IDEs) such as sine-cosine wavelets [4], Bessel functions [5] Homotopy Analysis Method [6], Homotopy
Perturbation Method [7], Adomian Decomposition Method [8, 9], Variational iteration method
[10, 11], differential transform method [12], Compact Finite Difference Method [13], and Galerkin
method [14, 15].

The aim of this paper is to approximate the solution of integro-differential equations of the second
kind, in the following general form

y′(x) = f (x) +

∫ b

a

K(x, t)y (t) dt, a ≤ x ≤ b, (1.1)

y(a) = α0, (1.2)

where y(x) is an unknown real function defined on the closed interval [a, b], and f(x) is an analytic
known function. Moreover the kernel K(x, t) is defined on the interval a ≤ x, t ≤ b.

Since 1990, radial basis function method [16] is used as a well-known family of meshless methods
to approximate the solutions of various types of linear and nonlinear functional equations such as
Partial Differential Equations (PDEs), Ordinary Differential Equations (ODEs), Integral Equations
(IEs), and Integro-Differential Equation (IDEs) [16, 17, 18, 19, 20, 21, 22]. The most of these
methods are used radial functions as bases for collocation method. Meshless Galerkin methods
using radial basis functions were first introduced by H. Wendland [23] and then a few researchers
used the method for solving PDEs [24, 25, 26]. In recent years, there are some applications of
Galerkin method [27, 14, 15].

In this paper, RBFs are used in the Galerkin method as basis functions in an indirect approach.
Indirect Galerkin method approximates the derivative of unknown function of the equation by a
finite linear combination of basis functions.

This paper is organized as follows. In Section 2, the Radial Basis Functions are introduced. Section
3, reviews the Legendre-Gauss-Lobatto integration method. Section 4, as the main part, presents the
solution of integro-differential equations by direct and indirect Galerkin RBF methods. Numerical
examples are presented in Section 5. A conclusion is drawn in the Section 6.

2 Radial Basis Functions

Approximation of a function u : Rd → R by RBF can be presented as the following [28]

sN (x) :=
N∑
i=0

λiφ (‖x− xi‖) , x ∈ Rd. (2.1)

Where φ : [0,∞) → R is a fixed univariate function, the coefficients (λi)
N
i=0 are real numbers,

(xi)
N
i=0 is a set of interpolation points in Rd, and ‖ · ‖ is the Euclidean norm.

Eq. (2.1) can be written as follows

sN (x) :=

N∑
i=0

λiφi(x) = ΦT (x)Λ, (2.2)
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where

φi(x) = φ(‖x− xi‖),

Φ(x) = [φ0(x), φ1(x), . . . , φN (x)]T ,

Λ = [λ0, λ1, . . . , λN ]T .

Consider N + 1 distinct support points (xj , u(xj)), j = 0, 1, . . . , N . One can use interpolation
conditions to find λis by solving the following linear system

AΛ= u,

in which

A = [φ(‖xj − xi‖)]Ni,j=0,

and u = [u(x0), u(x1), . . . , u(xN )]T .

Some well-known RBFs are listed in Table 1, where the Euclidian distance r is real and non-negative,
and c is a positive scalar, called the shape parameter. Some of RBFs are unconditionally positive

Table 1: Some well-known RBFs

Name of the RBF Definition

Gaussian φ(r) = e−(cr)
2

Inverse Quadric φ(r) = 1
r2+c2

Hardy Multiquadric φ(r) =
√
r2 + c2

Inverse Multiquadric φ(r) = 1√
r2+c2

Cubic φ(r) = r3

Thin Plate Spline φ(r) = r2 log(r)

Hyperbolic Secant φ(r) = sech( rc )

definite (e.g. Gaussian or Inverse Multiquadrics) to guarantee that the resulting system is solvable,
and some of them are conditionally positive definite. Although, some of RBFs are conditionally
positive definite functions, polynomials are augmented to Eq. (2.1) to guarantee that the outcome
interpolation matrix is invertible. Such an approximation can be expressed as follows

s (x) =

N∑
i=0

λiφ (‖x− xi‖) +

l∑
i=1

λN+ipi(x), x ∈ Rd. (2.3)

where pi(x), i = 1, . . . , l, are polynomials on Rd of degree at most m, and l =
(
m−1

d

)
. Here l is the

dimension of the linear space Πd
m−1 of polynomials of total degree less than or equal to m− 1, of d

variables.

Collocation method is used to determinate the coefficients (λ0, λ1, . . . , λN ) and (λN+1, λN+2, . . . , λN+l).
This will produce N + 1 equations at N + 1 points. l additional equations is usually written in the
following form

N∑
i=0

λipj(xi) = 0, j = 1, . . . , l. (2.4)
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3 Legendre-Gauss-Lobatto Quadrature

Let LN be the well-known Legendre polynomial of order N , on the interval [−1, 1]. Then the
Legendre-Gauss-Lobatto nodes are

(1− x2j )L′N (xj) = 0,

− 1 = x0 < x1 < . . . < xN = 1, (3.1)

where xm, 1 ≤ m ≤ N − 1 are the zeros of L′N , where L′N is the derivative of LN with respect to
x ∈ [−1, 1]. No explicit formula for the nodes (3.1) is known, and so they are computed numerically
using sub-routines [29, 30, 31]. Now we approximate the integral of f on [−1, 1] as∫ 1

−1

f (x) dx =

N∑
i=0

wjf (xj) , (3.2)

where xj in Eq. (3.1) are Legendre-Gauss-Lobatto nodes and wj are the weights given in [32]

wj =
2

N (N + 1)

1

(LN (xj))
2 , j = 0, 1, . . . , N. (3.3)

Note that the integration in Eq. (3.2) is exact whenever f(x) is a polynomial of degree ≤ 2N + 1.

4 Galerkin RBF Method

For implementing the Galerkin method, our functions belong to a complete normed linear vector
space, with the following inner product

< f, g >:=

∫ b

a

f(x)g(x)dx,

and the following norm

‖f‖ =

(∫ b

a

f2(x)dx

) 1
2

.

4.1 Galerkin RBF Method

In the direct method, the solution of Eq. (1.1) approximated by a finite linear combination of radial
basis functions, as follows

y(x) =

N∑
i=0

λiφi (x) +

m−1∑
i=1

λN+ipi(x) (4.1)

where

φi(x) = φ(‖x− xi‖),

xi, i = 0, 1, ..., N, are centers, and pi(x), i = 1, . . . ,m− 1, are polynomials on R of degree at most
m − 1. By defining φN+i(x) = pi(x), for i = 1, . . . ,m − 1, we can write Eq. (4.1) in the following
form

y(x) = ΦT (x)Λ, (4.2)

where

ΦT (x) = [φ0(x), φ1(x), . . . , φN+m−1(x)],
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and
Λ = [λ0, λ1, . . . , λN+m−1]T

is an unknown vector.

By differentiating from Eq. (4.1), we obtain

y′(x) = DΦT (x)Λ (4.3)

where
DΦT (x) = [φ′0(x), φ′1(x), . . . , φ′N+m−1(x)]

Substituting Eqs. (4.1) and (4.3) in Eq. (1.1), leads to

DΦT (x)Λ = f (x) +

∫ b

a

K(x, t)ΦT (x)Λdt. (4.4)

Inner product of two sides of Eq. (4.4) by φj(x), j = 0, 1, . . . , N + m − 1, generates a system of
linear equations for the unknowns λi, i = 0, . . . , N +m− 1.

< φj(x),D
(
ΦT (x)

)
> Λ =< φj(x), f(x) > + < φj(x),

∫ b

a

K(x, t)
(
ΦT (t)

)
dt > Λ. (4.5)

where j = 0, 1, . . . , N+m−1. By using the Legendre-Gauss-Lobatto quadrature, we can approximate
the integrals appeared in Eq. (4.5).

One can substitute initial condition

ΦT (a)Λ = α0,

for an equation in the foregoing linear system.

4.2 Indirect Galerkin RBF Method

In order to apply indirect Galerkin RBF (IGRBF) method, let’s approximate y′(x) in terms of
radial basis functions φi(x), i = 0, . . . , N and polynomials pi(x) =: φN+i(x), i = 1, . . . ,m − 1 as
follows

y′(x) =
N∑
i=0

λiφi (x) +

m−1∑
i=1

λN+ipi(x)

= ΦT (x)Λ (4.6)

Integrating of the Eq. (4.6) yields an expression for the original function:∫ x

a

y′(t)dt = y(x)− y(a)

=

N+m−1∑
i=0

λi

∫ x

a

φi (t) dt = IΦT (x)Λ

or
y(x) = IΦT (x)Λ + y(a), (4.7)

where y(a) is known from the initial condition and

IΦT (x) =

[∫ x

a

φ0(t) dt,

∫ x

a

φ1(t) dt, . . . ,

∫ x

a

φN+m−1(t) dt

]
.
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Substituting from Eqs. (4.6) and (4.7) in Eq. (1.1), leads to

ΦT (x)Λ = f (x) +

∫ b

a

K(x, t) IΦT (t)Λdt,

or (
ΦT (x)−

∫ b

a

K(x, t)IΦT (t)dt

)
Λ = f (x) . (4.8)

Inner product of two sides of Eq. (4.8) by φj(x), j = 0, 1, . . . , N + m − 1, generates a system of
linear equations for the unknowns λi, i = 0, . . . , N +m− 1

< φj ,

(
ΦT (x)−

∫ b

a

K(x, t)IΦT (t)dt

)
> Λ =< φj , f (x) > . (4.9)

Now numerical quadratures can be applied. Finally approximate solution of Eq. (1.1), is given by
(4.7).

The convergency of radial basis function interpolation has been discussed by Buhmann [33, 28] and
other researchers [34, 35, 36]. Also the error analysis of the IGRBF method are discussed in [26, 23].

5 Numerical Examples

In this section, two examples are provided to illustrate the efficiency of this approach. For the
sake of comparing purposes, we use the norm two of errors, and centers, xi are roots of Legendre
polynomial of degree N .

5.1 Example

Let us consider the following first order Volterra IDE

y′ = 1− 2x sin(x) +

∫ x

0

y(t)dt, y(0) = 0, 0 ≤ x ≤ 1. (5.1)

with the exact solution y(x) = x cos(x).

Errors of the numerical solutions of Eq. (5.1) by Galerkin RBF (GRBF) and indirect Galerkin RBF
(IGRBF) for N = 10, 15, 20, and three different RBFs, Gaussian (GA), Multiquadric (MQ), and
Inverse Multiquadric (IMQ), are shown in Table 2

Table 2: Errors for Example 1

GA MQ IMQ

N GRBF IGRBF GRBF IGRBF GRBF IGRBF

10 2.8852e-07 4.1743e-08 3.2830e-07 3.4020e-08 8.0619e-07 8.9479e-08

15 2.6959e-07 1.9768e-07 1.9996e-06 8.0225e-07 3.6005e-07 6.0615e-08

20 9.0134e-07 3.0391e-07 4.7677e-07 1.0683e-07 1.1740e-06 2.5984e-07
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5.2 Example

Consider the following IDE

y′(x) = (1 + x) cos(x)− sin(x) +

∫ x

0

ty(t)dt, y(0) = 0, 0 ≤ x ≤ 1. (5.2)

The exact solution is y(x) = sin(x).

Errors of the numerical solutions of Eq. (5.2) by GRBF and IGRBF for N = 10, 15, 20, and three
different RBFs, Gaussian (GA), Multiquadric (MQ), and Inverse Multiquadric (IMQ), are shown
in Table 3.

Table 3: Errors for Example 2

GA MQ IMQ

N GRBF IGRBF GRBF IGRBF GRBF IGRBF

10 2.4904e-07 1.2027e-08 8.2300e-08 1.3740e-08 3.4477e-07 2.7402e-08

15 1.6148e-07 9.7282e-07 1.9535e-07 9.2351e-08 2.2556e-07 3.0249e-08

20 5.6848e-06 3.4122e-07 2.3654e-07 3.9182e-08 3.2451e-07 3.1201e-08

6 Conclusion

Two new approaches based on Galerkin and RBF method are considered for solving integro-
differential equations. The first one, used RBFs as base functions for Galerkin method by approximating
the unknown function of Eq. (1.1). In the second one, indirect Galerkin RBF method, Galerkin
method used RBFs as base functions by approximating the derivative of the unknown function in
Eq. (1.1). Two numerical examples are presented to demonstrate that these methods are very
effective and useful for finding approximate solutions of integro-differential equations. The results
show that IGRBF method is more effective than GRBF method.
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