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Abstract

A stochastic differential equation (SDE) defined N independgnthastic processes;(t),t €
0, 77, /=1, .., /V, the drift term depends on the random variafgle The distribution of the random effect
¢; depends on unknown parameters. When the drift term is defiimearly on the random effed;
(additive random effect) angh; has Gaussian Distribution, we propose an alternative touf@ove
asymptotic properties of Maximum Likelihood Estimator (ML) verifying the regularity conditions
required through existing relevant theorems. We consideB#yesian approach to learn the hyper

parameters and proving asymptotic properties of the postésivibution of the hyper parameters in the
SDE’s model.

Keywords: Asymptotic normality; consistency; maximumlitiked estimator; mixed effects stochastic
differential equations; posterior normality; posterior istency.
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1 Introduction

The use of stochastic differential equations is veryrgiggean financial economics, biological sciences and
physical sciences. The SDE model's parameters andidosctstimate usually from observations of the
process. Models based on random effect prefer an incrgagpodarity. The estimation of ML of the model
parameters is intractable as the likelihood function is unatearost cases, except in Ditlevsen et al. and
Picchini et al. ([1,2]), they used a special case of ¥edieffects Brownian motion with drift to reach the
likelihood function which gives explicit parameters estians.

Many authors proposed approximations of the likelihood fanctLaplace’s approximation Vonesh and
Wolfinger ([3,4]), approximation by Hermit polynomialsitASahalia, [5] and approximation based on
linearization Bealikl and Sheiner [6].

Delattre et al. [7] considered a special case byiptyilig the drift by the random effect, whebéx, ¢;) is
linear ing; (b(x, ;) = ¢; b(x)). The consistency and the asymptotic normality ef (tMLE) proved for
Gaussian distribution random effect.

Maitra et al. [8], used the alternative route to prdwedonsistency and asymptotic normality in the SDE of
MLE. The asymptotic properties of the posterior distiiru (independent identical and independent non-
identical) proved for linear drift [9]. Where the study cortdddor the model proposed in [7].

Alsukaini et al. [10], considered nonlinearity in the diffusierm of the SDE where(x, ¢;) = a(x)/¢;
with ¢; has exponential and Gaussian distribution respectively. tlldg soncluded proves the consistency
and the asymptotic normality of the (MLE).

Delattre, et al. [7] studied the stochastic differergilationgSDE’s) of the form:
dX;(t) = b(X;(©), p)dt + o(X;(t))dW;(t), with X;(0) =x!, i=1,..,N 1)

Here, the stochastic process;(t),t = 0,i = 1,...,N ) is assumed to be continuously observed on the time
interval [0, T;] with T; > 0, and(x!, i = 1,..,N) are the initial values of thith process. Where the
processegW,, ..., Wy) are independent standard Brownian motidis, ..., ¢y) are independently and
identically distributed(i. i. d) random variables with common distributigip, 8)dv(¢) for all 8, g(¢, 0) is

a density with respect to a dominating measureR8h whereR is the real line anéh is the dimension.
Also the processgdV,, ..., Wy) are independent of random varial(es, ..., ¢ ). Heref known parameter
belonging to a sé? ¢ R™ which be estimated. The drift functidiix; ¢) is a known function defined on

R x R™ and real-valued. The diffusion coefficient the likeliho@dR — R is a known real-valued function.

In Delattre et al. [7] a regularity conditions proposeddtve equation (1) and the likelihood obtained as
follows:

2i(Xi, @) = [paLiX, 9)g (0, 0)dv(p) ,  i=1,..,N,

where

T; b(X;(0).9) T; b2(Xi(t),9) ,
Li(Xi, @) = exp <f0 Z(Xt(f;) dX;(s )—-f0 UZ(;(:) ds ) i=1,..,N. )

Where the likelihood depending upén admits a relatively simple form composed of the foitayv
sufficient statistics:

_ (Ti b(xi®) Ty b2(X;(D)) o
Ui= I Gy ) Vi= ki Gae) 4 i=1eN ©)
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And assume thaf; < « almost surely for every > 1.

Alkreemawi et al. [11] considered the addition case in ¢hiét term whereb(x, ¢;) is linear in
¢; ( b(x, ;) = ¢; + b(x)). The sufficient statistics (3) adopted for the considemodel and a new
sufficient statistics shown below investigated,

1 T b(X;())

T 1 T
Yi = fO m dXL(S) , Zi = fO m ds ’ Di = fO o'z(Xi(t)) S, (4)
the exact likelihood is given by
N
ay© =[ [0
i=1
Where
(X, 0) = [ —p)-% _1
i(X,,0) = [4a9(p. 0)exp (¥, = DY) =2, + (U = 2v;) | dv(p) 5)

Assuming thatg, ) = N(u,w?) , the following forms oft;(X;, 8) obtained:

4000 = e [ i (1= 2 e [ e @

wheref = (u,w?) € R x R* and studied asymptotic propertiesggfwheng; has a Gaussian distribution.

In this article, as an alternative, we will prove cosisy and asymptotic normality of the MLE in
Alkreemawi et al. [11] situation where drif{x, ¢;) is linear ing;( b(x, ;) = ¢; + b(x)) by verifying the
regularity conditions of relevant theorems already exgsin the literature. The Bayesian approach to
learning the hyper parameters will consider, and proves stensy and asymptotic normality of the
posterior distribution of the hyper parameters.

This paper is organized as follows, in section 2 we ingatgiconsistency and asymptotic normality of the
MLE in the SDE. In section 3 we consider the Bayesiaméwork, for the SDE, and prove consistency and
asymptotic normality of the Bayesian posterior distrimuipf8 = (u, w?).

2 Asymptotic Propertiesof MLE

2.1 Strong consistency of MLE

We used the assumptions referred as (H1), (H2) and (HB3) iand the assumption (H4) of Alkreemawi
et al. [11] is assumed as well. The functiqn )/a(.) assumed not constant, arif,, ¥;, Z;) has a density
f1(d,y, z) with respect to the Lebesgue measuréRonR* which is jointly continuous and positive on an
open ball ofR x R*. In addition to previous assumptions we propose the follonsagraptions to prove the
consistency and asymptotic normality of estimator: of

(H5) i-b(.) ando(x)areClonR satisfyingb?(x) < K(1 + x?) ando?(x) < K(1 + x2) for allx € R, for
someK > 0.

ii- Almost surely for each> 1,
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j”b“X‘”)ds<qa
0

a?(X;(s))
(H6) The parameter sétis a compact subset @ x R*.

(H7) The true valu@, belongs t@®°.
(H8) The matrix/ (8,) is invertible (see Alkreemawi et al. [11] section 3.2).

Now, we investigate consistency of tM&E by validation of regularity conditions of theorem (Theose
7.49 and 7.54 of Schervish [12]).

Theorem 1 [12]. Let{x,}7_, be conditionallyi.i.d given8 with densityf; (x|6) with respect to a measure
v on a spacéy’, BY). Fix 8, € 0, and define, for eacM < 6 andx € y'.

. f1(x160)
2(M,x) = inflog™r o0

Assume that for eadh # 6,, there is an open s#f such thab € N, and thatEg Z(Ng, X;) > —co. Also
assume thaf; (x|.) is continuous af for everyd, a.s. Py ]. Then if 8, is the MLE ofé corresponding ta
observations, It holds thaétm,,_,., 8, = 6, a.s. Py, -

Proposition 2.1.1. Under conditions (H5) and (H8). Then the MLE is stronglgsistent, in other words
limy, B, = 6, a.S. Py, ].

Proof. For verifying the conditions of Theorem 1 in our situatifor, anyx we note thatf; (x|6) =
A1 (x, 8) = A(x, 8) continuous i, which is given by (5), and explicit form by (6). Henéar, eachd # 6,
we obtain.

f1(x|90) llo 1+ WZZ1 l (Wg - Wz)(Y1 - D1)2 n HZZ1 _ u(¥y — Dy)
fl(x|y) 2 1+w2Z,) 2 +w2Z)A+w2Z) 2(1+w?Z) (1 +w?Zy)
H3Zy to(Yy — Dy)

200+ w2Zy) | A+ wizZy)

1 w w2 —-wz|) 1 Y, -D;, \ w?
>—liog(1+2 )+ —owg—w (o) (1+ 2
o (1+3)+ 7 } i) (14

| Y- lwg —w?| | H6Zy |H0(Y1 Dy)
—lul p 1+ 2 - 2
[1+w Z1 w 201 +w2z)| | +wzy)
From Lemma 3.1.1 in Alkreemawi et al. [11], we noted t ( —1 )2 E, |22 | and
A . [11], HéJ 1+wzy) ' 6o 1+wiz;

udzy
9 <—2(1+Wgzl)> are finite when we considev, = (u, ) (w2, w?), it follows that Es Z(Ng, X;) > —o.

Thus,lim,_., 8, = 0, a.s. Pg, -
2.2 Asymptotic normality of MLE

The theorem introduced by Schervish [12] (Theorem 7.63) tese@estigate asymptotic normality of MLE.

Theorem 2 [12]. Let ©® be a subset ofR™, and let{x,}r-, be conditionallyi.i.d given 6 with

~ ~ P
densityf;(.|0). Letd, be an MLE. Assume th#&, — 6, underP, for all 8. Assume thaf;(x|0) has
continuous second partial derivatives with respect tand that differentiation can be passed under the
integral sign. Assume that there exiB{gx, 6) such that, for eac, € int(0) and eachk, j,
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62
SUP||g-g,|<r mlogfxlw(xl@o) 26590, ———logfy,y(x19)| < H,(x,6,), (7
with
limr_,o EgoHr(x, 60) =0 (8)

Assume that the Fisher information matk(¢) is finite and non-singular. Then, undgs,

Vii(6, — 8,) = N(0,171(6,)) ©)

Proposition 2.2.1. Under conditions (H5) and (H6). Then tieLE is asymptotically normally distributed as
9).

Proof. The proof of Proposition 3.1.2. [11], showed that the difféméoh was passed under the integral
sign, and in proof of Proposition 3.3.1 in Alkreemawi lefhl], we proved almost sure consistency of the

~ ~ P
MLE 6, hencef,, — 6, underP, for all 8. From proof of Proposition 3.2.1 in Alkreemawi et al. [1dg
note that,

:_:Zlogfl(xle) = —fl(Wz), auaa%logfl(xle) = _7']1(9)61(W2) (lo)
o logfi(x6) = 1 (2n2 ()6 W?) — 2 (W?). 1)
Where 1;(6) = (—(Yil_fi)z_zﬂzi) and §;(w?) = — "ZZ . The derivatives (10) and (11) in our case

26,06, logf,(x|8) are differentiable in9 = (1, w?). To verify Two conditions as mentioned in Theorem 2,

(see (7) and (8)), we should prove the derivatives (10) andh@dihg a finite expectation undep,
(8o = (19, Ww2)). We have the upper bound:

14+w? 21

0<—%—
1+w3z;

<1+—

Introducing the functionh(x) = x — 1 — logx, which is defined oR* and non-negative, we have the
lower bound:

1+w221) _ (1+w221) 2 _
log (1+wgz1 =h 14w2z, +(wp —w )1+w22 w?* —wg) 1+wzz
thus
1+w221) ( wz) |w2—w§
< il
log (HW%Z1 <log|(1 +Wg L (12)
For the second term, we write:
(1-Dy)? _ ( ¥1-D; )2 1+wiz; ( Yi-Dy )2( w_z)
0< (1+w2z)(14w2zy) ~ \14w2zy) 1+w2Z; — \14wZ; 1+ w3 3t

By Lemma 3.1.1 in Alkreemawi et al. [11] the right-haideshas finitef, -expectation. For the last terms,
we only need to check that teff¥; — D;)/(1 + w?Z,)| has finite expectation undép . For this, we
remark that
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Y1—-D Y1-D Z
1 21 _n 21 (1+(W§—W2) 12 ),
1+w=Z; 1+wgZq 1+w=Z;

12| < || (1 + |W3W_2WZ|) (14)

1+w2z; | = l1+w2z,
Which has finiteE, -expectation by Lemma 3.1.1 in Alkreemawi et al. [11].

3 Asymptotic Properties of Bayesian Posterior

3.1 Consistency of the Bayesian posterior distribution

To prove posterior consistency in our situation, we use themiolgpptheorem (theorem 7.80 in Schervish
[12]) to verify sufficient conditions that ensure pogieconsistency.

Theorem 3 [12]. Let {x,}%_,, be conditionallyiid given8 with densityf; (x|8) with respect to a measure
v on a spac€y?, BY). Fix 6, € @, and define, for eac € 6 andx € y*.

. f1(x160)
Z(M,x) = inf log ™2 e s

Assume that for eadh = 6,, there is an open s} such that € Ny and thatEy Z(Ng, X;) > —c. Also

assume thaf; (x|.) is continuous af for everyd, a.s. Py ]. For € > 0, defineC, = {8 : K;(6,,0) < ¢},
where

2]
K,(8,,6) = Eg, (109 %) (15)

Is the Kullback-Leibler divergence measure associated @bservationX,. Letw be a prior distribution

such thatr(C,) > 0, for everye > 0. Then, for every > 0 and open sV, containingC, , the posterior
satisfies

limy o, t(Nol Xy, ..., Xy) =1, a.s. [Pg]. (16)

Proposition 3.1.1. Under conditions (H5) and (H8) the posterior consistencyhakling, in other
words lim,_,, t(No|Xy,...,Xp) = 1, a.s. [Py, |-

Proof. From above, the conditions of Theorem 3 are verified imofém 1 in section 2.1. To complete the
proof we need to ensure that a priorexists which for every > 0 gives positive probability ta,. Since
for anye > 0, K,(6,,0) = 0 if and only if 6, = 6, the sel, is nonempty provided tha\{6,} is non-

empty. Let(dn/dv) = h almost everywhere ofl, whereh(8) is any positive and continuous density
on ® with respect to the Lebesgue measurblow we show thak; (8,, ) is continuous irf. Since

K1(90‘ 0) = EQO(L1(90) - L1(9)),
Where

L1(6) = logh(X;,0) = logfy(x|6)

Rearranging terms, we obtain:
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_ _1 1+w221) 1 (w3-w?)(Y1-D;)? W2z,
L1(80) — £,(6) = leg (1+wgz1 2 (1+w2Z)(14w3Zy) | 2(1+w?Z)
_ p(¥1-Dy) wizy o(Y1-D1)

a+w?zZy)  2(1+w3z1)  (1+wdzZ,)

The functiond — £, (6,) — £,(0) is continuous. For all = (p,w?) € |E'F‘| x |w?, W?| € R x R*, from
inequalities (12)-(13)-(14), we can easily get an upper boundl{@e,) — £;(0)] which has finiteE, -
expectation and is uniform on the inter{@lﬁ] X [ﬂz, v_vz]. Because of the continuity of the Kullback

information and the compact parameter sgadbereforek; (6,, 8) is uniformly continuous of. Hence,
for anye > 0, there is5, independent di, such that|6 — 6, < §, impliesk;(6,,0) < ¢.
Therefore,

m(C) = m({0: 116 — Ooll < 8.3) = [infig. o o, 15,5 H(O)] x v({B: 116 — O, < 5,1 >0 (17)
Hence, (16) hold in our situation with any prior with contins density w.r.t. the Lebesgue measure.

3.2 Asymptotic normality of the Bayesian posterior distribution

We combine the Theorem 7.102 and 7.89 provided in Schervish [1Bjdstigate asymptotic normality of
posterior distribution in our situation. The above two theoresesl for several regularity conditions. For our
situation, we require only the first four conditions. We sthgerequisite conditions as below.

3.2.1 Regularity conditions:

(1) The parameter space@sc R™ for some finiten.

(2) 6, is a point interior t®.

(3) The prior distribution ofp has a density w. r. t. Lebesgue measure that is positidgecontinuous
ato,.

(4) There exists a neighborhoad, € 6 of 8, on which ¢,(8) = log f(Xy,...,X,|0) is twice
continuously differentiable w. r. t. all co-ordinateséfa.s.[P60 ].

Theorem 4 [12]. Let{x,}-, be conditionallyi.i.d given 8. Assume the above four regularity conditions.
Also assume that there exi¢is(x, 8) such that, for each, € int(0) and eaclt, j,

92

az
SUP|9-0,l<r Wlogfxlw(xl@o) ~ 39,38, logfx,jp(x|0)| < H,(x,6,), (18)
with
limEq H,(x,6,) = 0
-0

Further suppose that the conditions of Theorem 3 hold, and thaistter's information matrix(6,) is
positive definite. Now let

s {—t’;(@n) if the inverse and 8, exist (19)

I, if not,

where, for any t,

(o = ((Ma—agjf,v (e)|6:t)). (20)
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and I, is the identity matrix of ordem. Thus,Y;! is the observed Fisher's information matrix.
Letting ¥, = Z;l/z (9 - én), it follows that for each compact sub®ebf R™ and eacls > 0, it holds that

lim,_.., Po, (supyes|t@W1Xy, ... X)) — ()| > &) =0, (21)
whereg( .) denotes the density of the standard normal distribution.
Proposition 3.2.1. In the assumptions provided, an asymptotic normality sfgumr distributions holds.

Proof. The first three regularity conditions in Section 3.2.1 tilyidold. The remaining conditions of
Theorem 4 are verified in the context of Theorem 2 iniGec.2 Hence, equation (21) holds in our
situation.

4 Conclusion

In stochastic differential equations based random effeatdemframework. Alkreemawi et al. [11]
considered the addition case in the drift whge, ¢,) is linear ing;( b(x, ¢;) = ¢; + b(x)), whereg; has
Gaussian distribution with meam and variancew?, and for the likelihood of the above parameters
obtained a closed form expression. They proved convergencehahility and asymptotic normality of the
MLE of the parameters. In this paper, we proved strongistenmsy rather than weak consistency, and
asymptotic normality of the MLE under weaker assummztioNe have investigated Bayesian posterior
consistency in the context of Stochastic Differentigu&tion’s (SDE’s) consisting of drift functions
depending linearly upon random effect parameters. In pkaticwe have proved posterior asymptotic
properties.

Competing Interests
Authors have declared that no competing interests exist.
References

[1] Ditlevsen S, De Gaetano A. Mixed effects in stochadifterential equation models. REVSTAT
Statistical Journal. 2005;3:137-153.

[2] Picchini U, De Gaetano A, Ditlevsen S. Stochastic thffiial mixed-effects models. Scand. J. Statist.
2010;37:67-90.

[3] Vonesh EF. A note on the use of Laplace’s approximationnéminear mixed-effects models.
Biometrika. 1996;83(2):447-452.

[4] Wolfinger R. Laplace’s approximation for nonlinear mixed med&iometrika. 1993;80:791-795.
ISSN: 0006-3444.

[5] Aft Sahalia Y. Maximum likelihood estimation of discretelymgded diffusions a closed form
approximation approach. Econometrica. 2002;70:223-262.

[6] Beal S, Sheiner L. Estimating population kineti€itical Reviewsin Biomedical Engineering.
1982;8:195-222.

[7] Delattre M, Genon Catalot V, Samson A. Maximum likebd estimation for stochastic differential
equations with random effects. Scandinavian Journal oktati2013;40:322-343.



Khazal et al.; BIMCS, 16(6): 1-9, 2016; Article BOMCS.26140

(8]

(9]

(10]

(11]

(12]

Maitra T, Bhattacharya S. On asymptotics related tssatal inference in stochastic differential
equations with random effects. Submitted; 2014.
Available: http://arxiv.org/abs/1407.3968

Maitra T, Bhattacharya S. On Bayesian asymptotics in sstich@ifferential equations with random
effects. Statistics and Probability Letters. 2015;103:138.
Available: http://arxiv.org/abs/1407.3971

Alsukaini MS, Alkreemawi WK, Wang XJ. Asymptotic propestief MLE in stochastic differential
equations with random effects in the diffusion coefficientednational Journal of Contemporary
Mathematical Sciences. 2015;10(6):275-286.

Alkreemawi WK, Alsukaini MS, Wang XJ. On parametegstimation in stochastic differential
equations with additive random effects. Journal of Advanc&athematics. 2015;11(3):5018-5028.

Schervish MJ. Theory of statistics. Springer-Verlag, Nenrk; 1995.

© 2016 Khazal et al.; This is an Open Access artiitributed under the terms of the Creative Commatisbution License
(http://creativecommons.org/licenses/byj4 ®Which permits unrestricted use, distributiondamproduction in any medium, provided
the original work is properly cited.

Peer-review history:

The peer review history for this paper can be asedsere (Please copy paste the total link in your
browser address bar)

http://sciencedomain.org/review-history/14682




