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Abstract 
 

A stochastic differential equation (SDE) defined N independent stochastic processes ������, � ∈ 0, 
�, �=1, …, �, the drift term depends on the random variable ��. The distribution of the random effect ϕ� depends on unknown parameters. When the drift term is defined linearly on the random effect  ϕ� 
(additive random effect) and  ��  has Gaussian Distribution, we propose an alternative route to prove 
asymptotic properties of Maximum Likelihood Estimator (MLE) by verifying the regularity conditions 
required through existing relevant theorems. We consider the Bayesian approach to learn the hyper 
parameters and proving asymptotic properties of the posterior distribution of the hyper parameters in the 
SDE’s model. 
 

 
Keywords: Asymptotic normality; consistency; maximum likelihood estimator; mixed effects stochastic 

differential equations; posterior normality; posterior consistency. 
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1 Introduction 
 
The use of stochastic differential equations is very essential in financial economics, biological sciences and 
physical sciences. The SDE model's parameters and functions estimate usually from observations of the 
process.  Models based on random effect prefer an increasing popularity. The estimation of ML of the model 
parameters is intractable as the likelihood function is unclear in most cases, except in Ditlevsen et al. and 
Picchini et al. ([1,2]), they used a special case of a mixed-effects Brownian motion with drift to reach the 
likelihood function which gives explicit parameters estimators.  
 
Many authors proposed approximations of the likelihood function, Laplace’s approximation Vonesh and 
Wolfinger ([3,4]), approximation by Hermit polynomials Aı� t-Sahalia, [5] and approximation based on 
linearization Bealikl and Sheiner [6]. 
 
Delattre et al. [7] considered a special case by multiplying the drift by the random effect, where ���, ��� is 
linear in ��  (���, ��� =  ��  ����). The consistency and the asymptotic normality of the (MLE) proved for 
Gaussian distribution random effect.  
 
Maitra et al. [8], used the alternative route to prove the consistency and asymptotic normality in the SDE of 
MLE. The asymptotic properties of the posterior distribution (independent identical and independent non-
identical) proved for linear drift [9]. Where the study conducted for the model proposed in [7]. 
 
Alsukaini et al. [10], considered nonlinearity in the diffusion term of the SDE where ���, ��� = ��� � ��⁄  
with ��  has exponential and Gaussian distribution respectively. The study concluded proves the consistency 
and the asymptotic normality of the (MLE). 
 
Delattre, et al. [7] studied the stochastic differential equations �SDE’s� of the form: 
 ������ = �������, ����� + ��������� ����, !��ℎ   ���0� = �� , � = 1, … , �                                (1) 
 
Here, the stochastic process � �����, � ≥ 0, � = 1, … , � � is assumed to be continuously observed on the time 
interval [0, 
�]  with  
� >  0 , and ��� , � = 1, … , ��  are the initial values of the ith  process. Where the 
processes � +, … ,  ,�  are independent standard Brownian motions, ��+, … , �,�  are independently and 
identically distributed ��. �. �� random variables with common distribution .�/, 0��1�/� for all 0, .�/, 0� is 
a density with respect to a dominating measure on  ℝ3, where ℝ is the real line and m is the dimension. 
Also the processes � +, … ,  ,� are independent of random variables ��+, … , �,�.  Here 0 known parameter 
belonging to a set 5 ⊂  ℝ3 which be estimated. The drift function ���; /� is a known function defined on ℝ × ℝ3 and real-valued. The diffusion coefficient the likelihood  �: ℝ → ℝ is a known real-valued function. 
 
In Delattre et al. [7] a regularity conditions proposed to solve equation (1) and the likelihood obtained as 
follows: 
 

;���� , /� = < =���� , /�.�/, 0��1�/� ℝ> ,        � = 1, … , �, 
 
where   
 

=���� , /� = ?�@ A< B�CD�E�,FD�
GH�CD�E��  ����I�JDK − +

M < BH�CD�E�,FD�
GH�CD�E��  �IJDK N ,         � = 1, … , �.                             (2) 

    
Where the likelihood depending upon 0 , admits a relatively simple form composed of the following 
sufficient statistics:  
 

O� = < B�CD�E��
GH�CD�E��  ����I� JDK ,         P� = < BH�CD�E��

GH�CD�E��  �IJDK  ,     � = 1, … , �                                               (3) 
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And assume that P� < ∞ almost surely for every  � ≥ 1. 
 
Alkreemawi et al. [11] considered the addition case in the drift term where ���, ���  is linear in �� (  ���, ��� =  �� + ���� ). The sufficient statistics (3) adopted for the considered model and a new 
sufficient statistics shown below investigated, 
 

R� = < +
GH�CD�E��  ����I� JK ,    S� = < +

GH�CD�E��  �IJK  ,    T� = < B�CD�E��
GH�CD�E��  �IJK  ,                                       (4) 

 
the exact likelihood is given by 
 

U,�0� = V ;���� , 0�,

�W+
   

 
Where  
 

  ;���� , 0� = < .�/, 0�?�@ X/�R� − T�� − YH
M S� + ZO� − +

M P�[\ℝ> �]�/�                                        (5) 

 
Assuming that �/, 0� ≡ ��_, !M� , the following forms of ;���� , 0� obtained: 
 
 

;���� , 0 � = +
`+abHcD ?�@ d− cD+abHcD Z_ − �eDfgD�

cD [Mh ?�@ i�eDfgD�H
McD j × ?�@ iO� − +

M P�j,                    (6) 

 
where 0 = �_, !M� ∈ ℝ × ℝa and studied asymptotic properties of �� when �� has a Gaussian distribution.  
 
In this article, as an alternative, we will prove consistency and asymptotic normality of the MLE in 
Alkreemawi et al. [11] situation where drift ���, ��� is linear in ��( ���, ��� =  �� + ����) by verifying the 
regularity conditions of relevant theorems already existing in the literature. The Bayesian approach to 
learning the hyper parameters will consider, and proves consistency and asymptotic normality of the 
posterior distribution of the hyper parameters. 
 
This paper is organized as follows, in section 2 we investigate consistency and asymptotic normality of the 
MLE in the SDE. In section 3 we consider the Bayesian framework, for the SDE, and prove consistency and 
asymptotic normality of the Bayesian posterior distribution of 0 = �_, !M�. 
 

2 Asymptotic Properties of MLE 
 
2.1 Strong consistency of MLE 
 
We used the assumptions referred as (H1), (H2) and (H3) in [7] and the assumption (H4) of Alkreemawi          
et al. [11] is assumed as well. The function �� . �/�� . � assumed not constant, and  �T+, R+, S+� has a density l+��, m, n� with respect to the Lebesgue measure on ℝ × ℝa which is jointly continuous and positive on an 
open ball of ℝ × ℝa. In addition to previous assumptions we propose the following assumptions to prove the 
consistency and asymptotic normality of estimators of 0: 
 
(H5) i-�� . � and ����are C+on ℝ satisfying �M��� ≤ q�1 + �M� and �M��� ≤  q�1 + �M� for all � ∈ ℝ, for 

some q > 0.  
 
     ii- Almost surely for each � ≥ 1, 
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r �M����I���M����I�� �I < ∞JD
K  

 
(H6) The parameter set 5 is a compact subset of  ℝ × ℝa. 
(H7) The true value 0K belongs to 5s. 
(H8) The matrix t�0K� is invertible (see Alkreemawi et al. [11] section 3.2).  
 
Now, we investigate consistency of the MLE by validation of regularity conditions of theorem (Theorems 
7.49 and 7.54 of Schervish [12]). 
 
Theorem 1 [12]. Let w�xyxW+∞  be conditionally �. �. � given 0 with density l+��|0� with respect to a measure ] on a space �{+, ℬ+�. Fix 0K ∈ 5, and define, for each } ⊆ 5 and � ∈ {+. 
 

S�}, �� = ��l�∈� ��. l+��|0K�l+��|��  

 
Assume that for each 0 ≠ 0K, there is an open set �� such that 0 ∈ �� and that  ���S��� , ��� > −∞. Also 
assume that l+��|. � is continuous at 0 for every 0, a.s. [���]. Then if  0�x is the MLE of 0 corresponding to � 
observations, It holds that ���x→∞ 0�x = 0K a.s. [���].  
 
Proposition 2.1.1. Under conditions (H5) and (H8). Then the MLE is strongly consistent, in other words ���x→∞ 0�x = 0K a.s. [���].  
 
Proof. For verifying the conditions of Theorem 1 in our situation, for any x  we note that l+��|0� =;+��, 0� = ;��, 0� continuous in θ, which is given by (5), and explicit form by (6). Hence, for each 0 ≠ 0K 
we obtain.  
 

��. l+��|0K�l+��|�� = 12 ��. X1 + !MS+1 + !KMS+\ + 12
�!KM − !M��R+ − T+�M

�1 + !MS+��1 + !KMS+� + _MS+2�1 + !MS+� − _�R+ − T+��1 + !MS+�   
                                                                                                                   − _KMS+2�1 + !KMS+� + _K�R+ − T+��1 + !KMS+� 

 

≥ − 12 ���. X1 + !M
!KM\ + |!M − !KM|

!M � − 12 |!KM − !M| X R+ − T+1 + !KMS+\M X1 + !M
!KM\                                        

                               −|_| � R+ − T+1 + !KMS+� X1 + |!KM − !M|
!M \ − � _KMS+2�1 + !KMS+�� − �_K�R+ − T+��1 + !KMS+�� 

 

From Lemma 3.1.1 in Alkreemawi et al. [11], we noted that  ��� Z e�fg�+ab�Hc�[M , ��� � eDfgD+ab�HcD�  and 

��� A ��Hc�M�+ab�Hc��N are finite when we consider  �� = Z_, _̅[ × �!M, !� M�, it follows that  ���S��� , ��� > −∞. 

Thus, ���x→∞ 0�x = 0K a.s. [���]. 
 

2.2 Asymptotic normality of MLE 
 
The theorem introduced by Schervish [12] (Theorem 7.63) used to investigate asymptotic normality of MLE. 
 
Theorem 2 [12]. Let  5 be a subset of  ℝ3 , and let w�xyxW+∞  be conditionally �. �. �  given 0  with 

density l+� . |0�. Let 0�x  be an MLE. Assume that 0�x �→ 0K  under ��  for all  0 . Assume that l+��|0�  has 
continuous second partial derivatives with respect to  0 and that differentiation can be passed under the 
integral sign. Assume that there exists ����, 0� such that, for each 0K ∈ ����5� and each  �, �, 
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I�@‖�f��‖�� � �H
�� ��¡ ��.lC�|¢��|0K� − �H

�� ��¡ ��.lC�|¢��|0�� ≤ ����, 0K�,                                     (7) 

 
with  
 ����→K �������, 0K� = 0                                                                                                                  (8) 
 
Assume that the Fisher information matrix t�0� is finite and non-singular. Then, under  ���, 
   

√��0�x − 0K� ℒ→ ��0, tf+�0K��                                                                                                          (9) 
 

Proposition 2.2.1. Under conditions (H5) and (H6). Then the  MLE  is asymptotically normally distributed as 
(9). 
 
Proof. The proof of Proposition 3.1.2. [11], showed that the differentiation was passed under the integral 
sign, and in proof of Proposition 3.3.1 in Alkreemawi et al. [11], we proved almost sure consistency of the 

MLE   0�x, hence 0�x �→ 0K under �� for all  0. From proof of Proposition 3.2.1 in Alkreemawi et al. [11], we 
note that,    
       �H

��H ��.l+��|0� = −¥+�!M�,       �H
���bH ��.l+��|0� = −¦+�0�¥+�!M�                                           (10) 

 �H
�bH�bH ��.l+��|0� = − +

M �2¦+M�0�¥+�!M� − ¥+M�!M��.                                                                   (11) 

 

Where   ¦��0� = Z�eDfgD�f�cD+abHcD [  and ¥��!M� = cD+abHcD . The derivatives (10) and (11) in our case 

�H
�� ��¡ ��.l+��|0� are differentiable in  0 = �_, !M�. To verify Two conditions as mentioned in Theorem 2, 

(see (7) and (8)), we should prove the derivatives (10) and (11) having a finite expectation under ��� 
(0K = �_K, !KM �). We have the upper bound: 
 

0 < +abHc�+ab�Hc� < 1 + bH
b�H   

 
Introducing the function  ℎ��� = � − 1 − ��.�, which is defined on ℝa  and non-negative, we have the 
lower bound: 
 

��. Z+abHc�+ab�Hc�[ = ℎ Z+abHc�+ab�Hc�[ + �!KM − !M� c�+abHc� ≥ �!M − !KM� c�+abHc�， 

 
thus  
 

  ��. Z+abHc�+ab�Hc�[ ≤ ��. Z1 + bH
b�H[ + §bHfb�H§

bH                                                                                       (12) 

 
For the second term, we write: 
 

0 < �e�fg��H
�+abHc���+ab�Hc�� = Z e�fg�+ab�Hc�[M +ab�Hc�+abHc� ≤ Z e�fg�+ab�Hc�[M Z1 + bH

b�H[                                                 (13) 

 
By Lemma 3.1.1 in Alkreemawi et al. [11] the right-hand side has finite ���-expectation. For the last terms, 
we only need to check that term |�R+ − T+� �1 + !MS+�⁄ | has finite expectation under ��� . For this, we 
remark that  
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e�fg�+abHc� = e�fg�+ab�Hc� Z1 + �!KM − !M� c�+abHc�[， 

� e�fg�+abHc�� ≤ � e�fg�+ab�Hc�� Z1 + §b�HfbH§
bH [                                                                                                  (14) 

 
Which has finite Eθ�-expectation by Lemma 3.1.1 in Alkreemawi et al. [11].   
 

3 Asymptotic Properties of Bayesian Posterior 
 
3.1 Consistency of the Bayesian posterior distribution 
 

To prove posterior consistency in our situation, we use the following theorem (theorem 7.80 in Schervish 
[12]) to verify sufficient conditions that ensure posterior consistency.   
 
Theorem 3 [12]. Let  w�xyxW+∞ , be conditionally iid given 0 with density l+��|0� with respect to a measure  ]  on a space �{+, ℬ+�. Fix 0K ∈ 5, and define, for each } ⊆ 5 and � ∈ {+. 
 

S�}, �� = ��l�∈� ��. l+��|0K�l+��|��  

 
Assume that for each 0 ≠ 0K, there is an open set �� such that 0 ∈ �� and that  ���S��� , ��� > −∞. Also 
assume that l+��|. � is continuous at 0 for every 0, a.s. [���]. For  © > 0, define ª« = w0 ∶   q+�0K, 0� < ©y, 
where  
 

q+�0K, 0� = ��� Z��. ��®|���
��®|�� [                                                                                                         (15) 

 
Is the Kullback-Leibler divergence measure associated with observation �+. Let ̄  be a prior distribution 
such that  ¯�ª«� > 0, for every  © > 0. Then, for every © > 0 and open set �K containing  ª«  , the posterior 
satisfies 
 

  ���x→∞ ¯��K|�+, . . . , �x� = 1,        °. I.    ±���².                                                                             (16) 
 

Proposition 3.1.1. Under conditions (H5) and (H8) the posterior consistency is holding, in other 
words   lim´→∞ π�NK|X+, . . . , X´� = 1, a. s.    ±Pθ�². 
 
Proof. From above, the conditions of Theorem 3 are verified in Theorem 1 in section 2.1. To complete the 
proof we need to ensure that a prior  ¯  exists which for every  © > 0 gives positive probability to  ª«. Since 
for any ε > 0, q+�0K, 0� = 0 if and only if  0K =  0, the set ª«  is nonempty provided that 5\w0Ky is non-
empty. Let ��¯ �]⁄ � = ℎ  almost everywhere on 5 , where ℎ�0�  is any positive and continuous density 
on Θ with respect to the Lebesgue measure ]. Now we show that q+�0K, 0� is continuous in 0. Since 
 q+�0K, 0� = ����ℒ+�0K� − ℒ+�0��, 
 
Where       
                                              ℒ+�0� = ��.;+��+, 0� = ��.l+��|0� 
 
Rearranging terms, we obtain: 
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ℒ+�θK� − ℒ+�θ� = +
M log Z+a¼H½�+a¼�H½�[ + +

M
�¼�Hf¼H��¾�f¿��H

�+a¼H½���+a¼�H½�� + µH½�M�+a¼H½��                                 
 

− µ�¾�f¿��
�+a¼H½�� − µ�H½�M�+a¼�H½�� + µ��¾�f¿��

�+a¼�H½��   

 

The function θ → ℒ+�θK� − ℒ+�θ� is continuous. For all θ = � µ, wM� ∈ �µ, µÁ� × §wM, w� M§ ⊂ ℝ × ℝa, from 

inequalities (12)-(13)-(14), we can easily get an upper bound for |ℒ+�θK� − ℒ+�θ�| which has finite Eθ� -

expectation and is uniform on the interval iµ, µÁj × ±wM, w� M².  Because of the continuity of the Kullback 

information and the compact parameter space 5, therefore q+�0K, 0� is uniformly continuous on 5. Hence, 
for any © > 0, there is δε independent of θ, such that ‖0 −  0K‖ ≤ Â«  implies q+�0K, 0� < ©. 
Therefore, 
 ¯�Cε� ≥ ¯�w0: ‖θ −  θK‖ ≤ δεy� ≥ ±infw�: ‖θf θ�‖�δεy ℎ�0�² × ]�w0: ‖θ −  θK‖ ≤ δεy� > 0            (17) 
 
Hence, (16) hold in our situation with any prior with continuous density w.r.t. the Lebesgue measure. 
 
3.2 Asymptotic normality of the Bayesian posterior distribution 
 
We combine the Theorem 7.102 and 7.89 provided in Schervish [12], to investigate asymptotic normality of 
posterior distribution in our situation. The above two theorems used for several regularity conditions. For our 
situation, we require only the first four conditions. We state the requisite conditions as below.  
 
3.2.1 Regularity conditions: 
 

(1) The parameter space is 5 ⊆  ℝ3 for some finite �. 
(2) 0K is a point interior to 5. 
(3) The prior distribution of Å has a density w. r. t. Lebesgue measure that is positive and continuous 

at 0K. 
(4) There exists a neighborhood �K ⊆ 5 of 0K  on which ℓx�0�  =  ��. l��+, . . . , �x|0�  is twice 

continuously differentiable w. r. t. all co-ordinates of  0, a.s. [�00 ]. 
 
Theorem 4 [12]. Let w�xyxW+∞  be conditionally �. �. � given  0. Assume the above four regularity conditions. 
Also assume that there exists �Æ��, 0� such that, for each 0K  ∈  ����5� and each �, �, 
 

I�@‖�f��‖�� � �H
�� ��¡ ��.lC�|¢��|0K� − �H

�� ��¡ ��.lC�|¢��|0�� ≤ ����, 0K�,                          (18) 

 
with  
 ����→K �������, 0K� = 0 

 
Further suppose that the conditions of Theorem 3 hold, and that the Fisher’s information matrix t�0K� is 
positive definite. Now let 
  

∑xf+ = �−ℓx′′ �0�x�  if the inverse and  0�x  existË3                                        if not, Ì                                                                              (19) 

 
where, for any t, 
 

ℓx′′ ��� = ÍXÌ �H
��D��¡ ℓ,�0���WE\Î,                                                                                                      (20) 
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and Ë3  is the identity matrix of order � . Thus, ∑xf+  is the observed Fisher’s information matrix. 

Letting  Ïx = ∑xf+ M⁄ �0 − 0�x�, it follows that for each compact subset Ð of ℝ3 and each © > 0, it holds that 
 ���x→∞ ����I�@¢∈Ñ§¯�Å|�+, … , �x� − �Ò�Å�§ > ©� = 0,                                                              (21) 

 
where �Ò� . � denotes the density of the standard normal distribution. 
 
Proposition 3.2.1. In the assumptions provided, an asymptotic normality of posterior distributions holds. 
 
Proof. The first three regularity conditions in Section 3.2.1 trivially hold. The remaining conditions of 
Theorem 4 are verified in the context of Theorem 2 in Section 2.2 Hence, equation (21) holds in our 
situation. 
 

4 Conclusion 
 
In stochastic differential equations based random effects model framework. Alkreemawi et al. [11] 
considered the addition case in the drift where ���, ��� is linear in ��( ���, ��� =  �� + ����), where ��  has 
Gaussian distribution with mean  _  and variance  !M , and for the likelihood of the above parameters 
obtained a closed form expression. They proved convergence in probability and asymptotic normality of the 
MLE of the parameters. In this paper, we proved strong consistency rather than weak consistency, and 
asymptotic normality of the MLE under weaker assumptions. We have investigated Bayesian posterior 
consistency in the context of Stochastic Differential Equation’s (SDE’s) consisting of drift functions 
depending linearly upon random effect parameters. In particular, we have proved posterior asymptotic 
properties. 
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