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Abstract 
 

So far, various approaches have been proposed for effective and accurate prediction of software defects, 
yet most of these approaches have limited adoption in practice. The objective of this paper is to provide a 
framework which is expected to be more user-friendly, effective and acceptable for predicting the defects 
in multiple phases across software enhancement projects. This communication describes a process of 
applying computational intelligence technologies, in particular neural networks in formulating defect 
prediction models early in the software development life cycle. A series of empirical experiments are 
carried out based on input and output measures extracted from 50 'real world' project subsystems. In order 
to increase the adoption and make the prediction framework easily accessible to project managers, a 
graphical user interface (GUI) based tool has been designed and implemented that allows input data to be 
fed easily. 
The proposed framework uses historical data for training model and as a result provides a defect range 
(minimum, maximum) based output instead of a definite defect count based output. This is done in view 
of the fact that exact-count prediction has less probability of being correct as compared to range based 
predictions. The defect predictions can be used for taking informed decisions including prioritizing 
software testing efforts, planning additional round of code reviews, allocating human and computer 
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resources, planning for risk mitigation strategy and other corrective actions. The claim of effectiveness of 
proposed framework is established through results of a comparative study, involving the proposed 
framework and some well-known models for software defect prediction. 
 

 
Keywords: Software defect; software defect prediction model; Neural Network (NN); quality management. 
 

1 Introduction 
 
The constantly evolving technological infrastructure presents a great challenge for developing better, faster 
and cost effective software systems. The increasing complexity of software products and projects has been 
constantly pushing software organizations to improve product quality and performance. Most organizations 
have business goals of customer satisfaction and profitable growth, which are being met through increasing 
use of software systems. In organizations, defect count is most commonly used as one of the major indicator 
of product quality. A higher defect count may not only affect the planned cost and schedule but may also 
result in losing the customer base. Hence planning for reducing defect count during software development 
can bring significant business benefits. Most experts agree to the fact that it is always better to prevent 
defects or detect them earlier in software development life cycle rather than to let the end customer find 
them. 
 

In the current context, developing defect free software is a daunting task, specially, when software is being 
developed for problems with increasing complexity. However, occurrences of certain defects are inevitable 
in spite of all measures planned by the organizations. In order to control and reduce defect injection in 
software engineering processes, organizations not only have to plan huge budgets for time and resources but 
also need to plan for appropriate defect prediction model [1]. The Software Capability Maturity Model 
Integration (SW-CMMI) framework from CMMI Institute provides a set of requirements that organizations 
can use in setting up the software process used to control software development process and guide 
organizations in high performance operations. The CMMI framework highlights use of defect prediction 
model as one of the high maturity practices.  In this regard, IT organizations must make use of quantitative 
techniques like control charts and prediction models to showcase the process improvements while planning 
for CMMI L5 appraisal from CMMI Institute [2,3]. Software defect prediction framework once 
implemented is used as effective tool by organizations for the purpose of identifying parts/phases of a 
software life cycle, requiring increased focus before release and taking necessary corrective and preventive 
actions towards reducing defect leakage. 
 

1.1 Software enhancement project life cycle 
 
A complex software development project would typically consist of phases such as, Requirement gathering, 
Design, Construction (including Coding and Unit Testing), System Testing, User Acceptance Testing, 
Implementation, and Post Implementation support. In the current business context, there are ever changing 
business needs, and as a consequence, frequent changes to an already implemented project have become an 
integral part of the process. These changes are made and controlled through due approvals from select teams 
usually termed as Change Advisory Board (CAB) constituted by the organization. Changes are generally 
approved on the basis of new requirements that have touch point(s) to the code of the already existing 
software. Depending on factors such as changes in size (function points/line of codes), the priority and the 
criticality, the project team generally decides whether the new change should be considered as a production 
support ticket or an enhancement by itself. In view of the fact that software enhancements are generally of 
smaller duration, these are termed as mini or short projects. The enhancement life cycles generally covers 
phases such as Requirement Gathering, Impact Analysis, Construction, Testing with UAT and Post 
Implementation. Effort spent under each of the software enhancement includes production effort, review 
effort and rework effort. Both effort and defects are interrelated by the fact that the production effort yields 
the number of defects injected, the review effort yields the number of defects detected and the rework effort 
removes the defects so detected. It is a well known fact that there is a relationship between functionality 
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enhancement and software defects distribution [4]. A prediction model generally predicts the number of 
defects as against the amount of effort for each of the phases aforementioned. Enhancement life cycle 
methodology represents improvements to existing software in terms of functionality / technologies. This 
enhancement methodology is suitable for ongoing maintenance of large applications. These projects carry 
out identified enhancements as a part of periodic releases and / or individual basis depending on priority and 
customer preferences.   
 

The enhancement methodology is most suited to projects in the following scenarios:  
 

• Small changes to a large application  
• Significantly changes in core architecture and functionality   
• Simpler requirements / requirement changes  
• Small changes in functional and technology upgrade  

 
In previous paper [5], the authors have presented a neural network based framework to predict defects in 
large software projects based on waterfall lifecycle. The overall duration of most of software enhancement 
project is quite small as compared to waterfall lifecycle based projects. In this communication, three distinct 
phases (Requirement Gathering, Construction and Testing) from the software enhancement projects have 
been considered for designing the framework.  In view of the fact that the effort and duration for analysis 
and design phase plays a minimal role, hence, the defect prediction for these phases is not taken into 
consideration.  
 

It has also been observed that relevant research work in the field past is focused more towards software 
development as compared to software enhancements or software maintenance [6]. Unfortunately, there is 
shortfall of appropriate defect prediction models for software enhancement projects. To address this problem, 
we propose a defect prediction model for software enhancement projects, justifying the investigations 
reported through this communication. 
 

The paper is organized as follows. Section II provides a brief overview of Neural Networks, Section III 
reviews the existing literature on the subject, Section IV describes the proposed framework and discusses the 
results as obtained through use of the proposed defect prediction framework vis-à-vis some other relevant 
models/frameworks, and finally Section V concludes the presented work. 

 

2 Computational Intelligence Technologies 
 
During the previous decade, there has been increased integration between the fields of software engineering 
and computational intelligence (Cl). Where, the CI includes mature technologies of fuzzy logic, neural 
networks, genetic algorithms, genetic programming, rough sets and hybrid systems that combine two or 
more of these individual technologies like ANFIS. The computational intelligence area provides a unique 
opportunity of incorporating these technologies to address various software engineering problems. The main 
objective of incorporating Cl technologies into the various SDLC phases is to address the issues arising due 
to imprecise measurement and uncertainty of information [7,8]. The next section discusses about the 
structure and functions of a Neural Network.  
 
2.1 Neural networks 
 
Artificial Neural Network (ANN) approach is inspired by the human brain networks, which is a network of 
about 100 billion neurons, each neuron being connected, on the average, to about 1000 other neurons. A 
neuron is basic constituent of human brain, a sort of elementary processor having small local memory and 
capable of localized information processing.  In Fig. 1, the leftmost layer in this network is called the input 
layer which consists of neurons called input neurons, through which inputs from the environment are 
received by the ANN. The rightmost or output layer contains the output neurons through which output to the 
environment are delivered by ANN. The middle layer (s) is called a hidden layer in which the actual 
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processing by ANN takes place. The signal or input given to one neuron is passed to all the neurons to 
which it is connected in fractions equivalent to the weight between these neurons. Each neuron-to-neuron 
connection has a variable weight quantifying the connection strength. Each neuron calculates its output 
based on a function which can be sigmoid, step or some such suitable function. In the first phase, the neural 
network performs learning by finding a vector of interconnection weights that minimizes its error on the data 
set used for training that has known values of inputs and corresponding outputs. In the next phase, after 
selection of the connection weights, the network predicts the output values for data having known inputs and 
unknown outputs.  
 

 
 

Fig. 1. Neural network [5] 
 

Depending upon the pattern (architecture) of the connection, artificial neural network can be classified into 
two categories, feed-forward networks and recurrent (or feedback) networks. In feed-forward networks, 
graphs have no loops and the output from one layer is used as input to the next layer. In feedback networks, 
there are loops providing feedback connection to input layer. 
 

One of the major advantages of neural networks over traditional expert systems is their ability to 
automatically learn from examples. ANNs have the ability to learn underlying rules (like input-output 
relationships) from the given collection of representative examples. A neural network learns patterns by 
adjusting its weights. When the neural network is properly trained, it can give correct, or nearly correct, 
answers for not only the sample patterns, but also for new similar patterns [9,10].  
 

3 Related Literature Review 
 
Software defect prediction is an active research area in field of software engineering. Researchers have 
proposed new defect prediction algorithms and/or new metrics to effectively predict defects. The historical 
data of software systems is a valuable asset used for research ranging from software design to software 
development, software maintenance, software testing, etc.  In view of the fact that each defect prediction 
model has its own set of advantages and disadvantages, it is difficult to find most appropriate model for a 
particular type of project scenario, especially in view of the fact that every software project tends to be 
unique. 
 

Neural networks have been found to be effective in situations where data relationships may not be known, as 
normally happens in the case of software defect prediction. It was observed during literature review that 
neural network based framework for modeling defect prediction has been successful in following application 
areas:  
 

• Diverse fields range from autonomous vehicle control [11]. 
• Financial risk analysis to handwriting recognition [12].  
• Dynamic software reliability modeling [13].  
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• Applying neural networks in software effort estimation [14,15].  
• Software metrics models [16,17,18,19,20,5]. 

 
Prior to conducting the experiments, it is necessary to decide upon appropriate computational intelligence 
approach. It was decided to use neural network paradigm for creating defect prediction model framework for 
software enhancement project. This decision was based upon the fact that the relationship between effort and 
defect data is quite complex and is generally difficult to represent in functional or near functional form.  The 
decision is further strengthened by the author's previous experience with using neural networks to model 
software defect prediction tool for Java waterfall life cycle based software projects [5].  
 
In past, McCabe [21] and Halstead [22] work based on metrics have been commonly used to describe the 
attributes of each software module (i.e. the unit of functionality of source code). General 
principles/approaches/steps which have been found useful so far in handling the difficult task of software 
defect prediction, along with the relevant literature, are summarized below: 
 

• In [23], an enhanced Multilayer Perceptron Neural Network based technique has been used for 
defect prediction. Comparative analysis of defect proneness predictions was performed using 
dataset from NASA MDP (Metrics Data Program). The results from proposed MLP neural network 
model were better when compared with existing techniques like Random Tree, classification and 
regression trees (CART) algorithm, and Bayesian logistic regression. 

• In [24], Adaptive Resonance Neural Network having 29 input nodes and two output nodes is 
designed for the purpose of defect prediction in software programs. PROMISE dataset is used to 
train the network. The results showed that recall (true positive) rate is improved in predicting 
whether a module is defective or not [25]. 

• In [26], a software reliability modeling approach in terms of the predictive quality and the quality 
of fit is described using neural and regression analysis techniques. The data set has been taken from 
an Ada development environment for the command and control of a military data link 
communication system (CCCS).  Results showed that the neural network based model has smaller 
standard error and is superior to traditional regression based techniques.  

• In [5], neural network based defect prediction model has been successfully used for predicting 
defects across Java based projects following waterfall life cycle.  The tests conducted for 15 
projects showed accuracy close to 90 %. 

• In [27], neural network based tool using Levenberg-Marquardt (LM) algorithm is used for software 
defects. The PROMISE repository dataset uses the CKOO (Chidamber and Kemerer Object-
Oriented) metrics. The results showed that neural network based algorithm provides better accuracy 
(88.09%) as compared to each of polynomial function-based neural networks (pF-NNs), linear 
function-based neural network (lf-NN) and quadratic function-based neural network (qf-NN) 
respectively. 

 
This paper describes a neural network based framework for formulating models for defect prediction early in 
the software life cycle. For the purpose, a series of empirical experiments is conducted based on input and 
output measures extracted from 'real world' projects. The experiments establish the efficacy and superiority 
of the approach. Next section describes the proposed framework. 
 

4 The Proposed Framework 
 
As mentioned earlier, the objective of this study is to develop prediction for forecasting the defects in 
software enhancement projects. In this section, first the assumptions made about the proposed framework 
have been explained. Then the structure of the proposed framework and functions of major components of 
the framework are described. The results and other related issues are discussed in the next section.  



 
The experiments reported here involve data set taken from 50 re
Out of this dataset, 40 projects are used for training the model and the rest 10 projects data are used to 
validate the accuracy of the model. The actual defect data is taken from completed software enhancement 
projects. This historical data has served as a training data to build the proposed framework (refer Fig
then the neural network so obtained is used to predict the defects for all new projects.  
 

While executing software projects, estimated effort is 
development cost and project schedule. In this communication, the defect prevention effort, review effort 
and rework effort have been considered along with the production effort. In view of the fact that 
voluntary effort towards defect prevention activities increases, there is a considerable decrease in 
involuntary costs of rework leading to overall better quality [24,28]. The effort estimation for all software 
enhancement projects considered in this pa
technique [29].  
 

4.1 Structure of the proposed neural network
 
A feed-forward network with sigmoid (hidden and linear output neurons) is used to formulate the system. 
The network is trained with scaled conjugate gradient back
 
Defect prediction system consists of three parallel neural networks
parameters for each sub phase. Only first phase, that is, Requirement Gathering phase is having 10 hidden 
layers. The architectural view of Neural Network for requirement gathering phase is shown in Fig
 

Fig. 3.
 
The decision on number of hidden layers to be used is done while considering the need of optimizing the 
regression value for attaining the best performance. Despite the fact that use of more neurons require more 
computation and also such use leads to over fitting the data  yet,  at the same time, it  allows the network to 
solve more complicated problems [30]. 
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Fig. 2. Model framework design 
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Input data of 40 real time projects is divided randomly in three parts before training is initiated: Training 
(70%), Validation (15%) and Testing (15%). Fig. 4 shows the data distribution.
 

 
Fig. 4. Validation and 

 
Since the Levenberg Marquardt back-
memory, this is being used for training the network. Neural network design configuration parameters are 
listed in Table 1. 
 

Table 1. Network 
 
S. no. Parameters Requirement 
1 Training samples 40 samples of 4 elements (4 X 40)                                                

[Production 
2 Target samples 40 samples of 1 element (1 X 40) [Defect]
3 Hidden layer 10 
4 Data division for 

network use 
Training (70%), 

 
4.2 User interface for testing the framework with new projects
 
One of the primary objectives during GUI design has been to provide ease
GUI  based tool developed using Matlab R2013b uses only two windows, the first for identifying the phase 
for which prediction is required and the secon
straightforward output of the defect predictions ( refer Fig. 5). For any new project, the project manager will 
provide the inputs required to the UI. The inputs would be the phase wise efforts pla
Apart from production effort, the planned review effort, planned prevention effort and the planned rework 
effort are also required as a feed to the framework. Based on these inputs, the framework will forecast the 
number of defects that the project manager could expect to be discovered in various SDLC phases in the 
project. The defects are forecast in a range based manner. The framework would provide the minimum and 
maximum number of defects. The forecast would enable the project manag
the phase where the framework is projecting higher number of defects. The project manager can plan for 
multiple preventive actions, such as multiple review gates, usage of tools, and increasing review effort to 
mitigate the higher probability of defect leakage.
 
4.3 Results and discussion on NN based 
 
In the experiments, the data sets with different network architectures have been used. The actual defects data 
from 40 completed projects was taken and used as a training data. Later, the framework was also tested for 
prediction of defects for newly started projects. The quality of fit and the predictive quality found for each of 
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Input data of 40 real time projects is divided randomly in three parts before training is initiated: Training 
tion (15%) and Testing (15%). Fig. 4 shows the data distribution. 

Fig. 4. Validation and test data percentage 

-propagation optimization method is considered to be fast and uses less 
ning the network. Neural network design configuration parameters are 

Table 1. Network design configuration 

Requirement phase Construction phase Testing 
40 samples of 4 elements (4 X 40)                                                
[Production effort, review effort, rework effort & prevention effort
40 samples of 1 element (1 X 40) [Defect] 

5 20
Training (70%), validation (15%) & testing (15%) 

testing the framework with new projects 

One of the primary objectives during GUI design has been to provide ease-of-use for project manager. The 
GUI  based tool developed using Matlab R2013b uses only two windows, the first for identifying the phase 
for which prediction is required and the second to input the planned effort for activities and returns a 
straightforward output of the defect predictions ( refer Fig. 5). For any new project, the project manager will 
provide the inputs required to the UI. The inputs would be the phase wise efforts planned for the project. 
Apart from production effort, the planned review effort, planned prevention effort and the planned rework 
effort are also required as a feed to the framework. Based on these inputs, the framework will forecast the 

at the project manager could expect to be discovered in various SDLC phases in the 
project. The defects are forecast in a range based manner. The framework would provide the minimum and 
maximum number of defects. The forecast would enable the project manager to plan prevention activities for 
the phase where the framework is projecting higher number of defects. The project manager can plan for 
multiple preventive actions, such as multiple review gates, usage of tools, and increasing review effort to 

the higher probability of defect leakage. 
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the data sets have given very optimistic results (as discussed below). The prediction results indicate that the 
network (based on the proposed framework) tries to track the behavior of the full data set and its predicted 
value around the actual values –sometimes less and something more.  
 

 
 

Fig. 5. Defect prediction system UI 
 

For the test results of pilot conducted on 40 projects, software enhancement project dataset has correlation 
coefficient R value of 0.97 for Requirement gathering phase, 0.91 for construction phase and 0.89 for testing. 
The regression value depicts a closer relationship between the predicted and actual defects. The R value 
measures the correlation between outputs and targets. Fig. 6 represents the relationship for all three SDLC 
phases (Requirement gathering, Construction, Testing) for software enhancement project and defines the 
prediction reliability of the network designed. 
 

 
 

Fig. 6. Representation of R value for phases of software enhancement projects 
 
Table 2 shows metrics which are often used by researchers to assess the performance of the model 
 

• The mean absolute error (MAE) is used to measure how close forecasts or predictions are to the 
eventual outcomes.  

• The mean squared error (MSE) is used to measure the average of the squares of the "errors", that is, 
the difference between the estimator and what is estimated.  

• The root-mean-square error (RMSE) is used to measure differences between values (sample and 
population values) predicted by a model and the values actually observed [31]. 

 
As shown in Table 2, the MAE, MSE and RMSE values arrived from complete data set of 50 projects shows 
that ANN prediction results are in line with the Actual results. Also, the comparison of the defect trend chart 
(refer Fig. 7) from 10 projects during model validation phase shows that, in most cases, actual defects trend 
follows the ANN prediction trend.  
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Table 2. Comparative MAE, MSE and RMSE value for neural network model predictions and actual 
defects 

 
Phase Mean absolute error 

(MAE) 
Mean squared error  
(MSE) 

Root mean square error 
(RMSE) 

Actual defects vs  
NN predicted defects 

Actual defects vs  
NN predicted defects 

Actual defects vs  
NN predicted defects 

Requirement 0.43  0.52  0.72  
Construction 1.61 5.38  2.32 
Testing 2.93 57.82  7.60 

 

 
 

Fig. 7.  Defect trend chart showing NN model prediction compared with actual defects 
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4.4 NN framework comparisons of results 
 
The artificial neural network framework based approach appears to be promising for solving software 
engineering problems on defect prediction where historical data from past software enhancement projects is 
made available. The model performed well in the preliminary validation experiments. 
 

The results from software enhancement project dataset has R value of 0.97 for Requirement gathering phase, 
0.91 for construction phase and 0.89 for testing phase. The overall prediction reliability of the network 
designed is close to 92%. These results obtained by the proposed framework based on Neural Network are 
comparable with, and even better than, the results with accuracy of 88.09 % as obtained in [27], using public 
PROMISE library and Levenberg-Marquardt (LM) algorithm based neural network for predicting the 
software defects. The results are also better than with the work done on neural network based defect 
prediction model for Java projects following waterfall life cycle, having accuracy of 90% [5]. 
 

5 Conclusions 
 
The results from experiments indicate that the proposed framework based on neural network approach 
possesses good properties from the standpoint of model quality of fit and predictive capability. The 
conclusions are based on investigations of software enhancement projects data set. In order to adapt the 
proposed framework to suit other software methodologies like ERP, Agile, Production Support, etc, further 
effort is required. The investigations in those respects will be reported in subsequent communications. 
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