Three-dimensional MHD Mixed Convection Casson Fluid Flow over an Exponential Stretching Sheet with the Effect of Heat Generation

Kankanala Sharada\(^{1*}\) and B. Shankar\(^{1}\)

\(^{1}\)Department of Mathematics, Osmania University, Hyderabad, Telangana, India.

Authors’ contributions

This work was carried out in collaboration between both authors. Author KS designed the study, wrote the protocol and supervised the work. Authors KS and BS carried out all laboratories work and performed the statistical analysis. Author KS managed the analyses of the study. Author BS wrote the first draft of the manuscript. Author KS managed the literature searches and edited the manuscript. Both authors read and approved the final manuscript.

Article Information

DOI: 10.9734/BJMCS/2016/29454

Editor(s):
(1) Sheng Zhang, Department of Mathematics, Bohai University, Jinzhou, China.

Reviewers:
(1) N. Sandeep, VIT University, India.
(2) L. Animasaun Isaac, Federal University of Technology, Akure, Ondo State, Nigeria.
(3) V. Ramachandra Prasad, Madanapalle Institute of Technology and Science, Chittoor District, Andhra Pradesh, India.

Complete Peer review History: http://www.sciencedomain.org/review-history/16934

Received: 11\(^{th}\) September 2016
Accepted: 5\(^{th}\) November 2016
Published: 16\(^{th}\) November 2016

Abstract

In this article, the governing equation which models the problem of steady three-dimensional Casson fluid flow over an exponentially stretching surface in the presence of Lorentz force is investigated. We have considered the effects of heat generation and mixed convection. Similarity transformations are used to convert the partial differential equations to set of ordinary differential equations. These equations are solved by applying Keller Box method. The effects of Magnetic parameter, mixed convection parameter, heat source/sink, Casson parameter, ratio parameter are investigated on the velocity and temperature profiles graphically.

Keywords: Magnetohydrodynamic (MHD); Casson fluid; heat generation.

*Corresponding author: E-mail: kankan.sharada@gmail.com;
1 Introduction

2 Mathematical Formulation

Let us consider a three dimensional steady, laminar, incompressible MHD mixed convection flow of a Casson fluid over an exponential stretching sheet. The sheet $z=0$ is stretched with the velocities $U_0 = U_0 e^{x_1}$ and $V_0 = V_0 e^{x_2}$ along the xy plane as shown in the above Fig. 1. Where U_0, V_0 are constants. The uniform magnetic field is applied in the z-direction that is perpendicular to the flow. A heat source/sink is placed within the flow to allow for heat generation or absorption effects.

Consider u, v and w are velocity components in the directions of x, y and z respectively in the flow field. The governing equations of continuity, momentum and energy are given by

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0 \quad (1)$$

$$u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} = \nu (1 + \frac{1}{\rho} \frac{\partial^2 u}{\partial x^2} + g \beta T(T - T_0)) - \frac{\sigma B^2}{\rho} u \quad (2)$$
\[u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} = v(1 + \frac{1}{\rho}) \frac{\partial^2 v}{\partial z^2} - \frac{\sigma B_0^2}{\rho} v \] \hspace{1cm} (3)

\[u \frac{\partial \phi}{\partial x} + v \frac{\partial \phi}{\partial y} + w \frac{\partial \phi}{\partial z} = \alpha \frac{\partial^2 \phi}{\partial z^2} + \frac{Q_1}{\rho c_p} (T - T_{\infty}) \] \hspace{1cm} (4)

where \(\rho \) is the density of the fluid, \(\sigma \) is the electrical conductivity, \(v \) is the kinematic viscosity, \(B_0 = B_0 e^{xy} \) is the dimensional magnetic induction, \(\alpha = \frac{K}{\rho c_p} \) is the thermal diffusivity, \(K \) is the thermal conductivity, \(c_p \) is the specific heat capacity at constant pressure, \(T_{\infty} \) is the free stream temperature, \(Q_1 = Q_0 e^{xy} \) is the dimensional heat generation. The boundary conditions considered are defined as

\[u = U_w, \quad v = V_w, \quad w = 0, \quad T = T_w \quad \text{at} \quad z = 0. \] \hspace{1cm} (5)

\[u \to 0, \quad v \to 0, \quad T \to T_{\infty} \quad \text{as} \quad z \to \infty. \] \hspace{1cm} (6)

Introducing the similarity transformations

\[\eta = \frac{u_0}{2L} e^{x/2L} f', \quad u = U_0 e^{x/2L} f'(\eta) \quad v = U_0 e^{x/2L} g'(\eta) \quad T = T_w + T_0 e^{xy} \theta(\eta). \]

\[w = - \frac{u_0}{2L} e^{x/2L} (f' + \eta f'' + g + \eta g') \quad \text{in to the equations (2) \& (3) \& (4) we get} \]

\[(1 + \frac{1}{\rho}) f'' + (f + g) f' - M f' + 2 \lambda \theta = 0, \] \hspace{1cm} (7)

\[(1 + \frac{1}{\rho}) g'' + (f + g) g' - M g' = 0, \] \hspace{1cm} (8)

\[\frac{1}{\Pr} \theta' - [(f' + g') \theta + (f + g) \theta'] + 2Q \theta = 0. \] \hspace{1cm} (9)

Where \(M = \frac{2 \sigma B_0^2}{\rho u_0^2} \) is the magnetic parameter, \(\Pr = \frac{v}{\nu} \) is the Prandtl number, \(\lambda = \frac{G_{\text{Gr}}}{Re} \) is the mixed convection parameter, \(Re = \frac{u_0 L}{\nu} e^{x/2L} \) is the Local Reynolds number, \(G_{\text{Gr}} = \frac{g \beta \rho (T_w - T_{\infty}) x^2 L}{\nu^2} \) is the Local Grashof number, \(Q = \frac{2 \sigma B_0^2}{\rho u_0 c_p} \) is the local heat source (or sink) parameter.

Fig. 1. Physical model and coordinate system

Introducing the similarity transformations

\[\eta = \frac{u_0}{2L} e^{x/2L} z \quad , \quad u = U_0 e^{x/2L} f'(\eta) \quad v = U_0 e^{x/2L} g'(\eta) \quad T = T_w + T_0 e^{xy} \theta(\eta). \]

\[w = - \frac{u_0}{2L} e^{x/2L} (f' + \eta f'' + g + \eta g') \quad \text{in to the equations (2) \& (3) \& (4) we get} \]

\[(1 + \frac{1}{\rho}) f'' + (f + g) f' - M f' + 2 \lambda \theta = 0, \] \hspace{1cm} (7)

\[(1 + \frac{1}{\rho}) g'' + (f + g) g' - M g' = 0, \] \hspace{1cm} (8)

\[\frac{1}{\Pr} \theta' - [(f' + g') \theta + (f + g) \theta'] + 2Q \theta = 0. \] \hspace{1cm} (9)

Where \(M = \frac{2 \sigma B_0^2}{\rho u_0^2} \) is the magnetic parameter, \(\Pr = \frac{v}{\nu} \) is the Prandtl number, \(\lambda = \frac{G_{\text{Gr}}}{Re} \) is the mixed convection parameter, \(Re = \frac{u_0 L}{\nu} e^{x/2L} \) is the Local Reynolds number, \(G_{\text{Gr}} = \frac{g \beta \rho (T_w - T_{\infty}) x^2 L}{\nu^2} \) is the Local Grashof number, \(Q = \frac{2 \sigma B_0^2}{\rho u_0 c_p} \) is the local heat source (or sink) parameter.
The boundary conditions are reduced to

\[\eta=0: \quad f'(\eta) = 1, \quad g'(\eta) = C, \quad f(\eta) = 0, \quad g(\eta) = 0, \quad \theta(\eta) = 0. \]

\[\eta \to \infty: \quad f'(\eta) \to 0, \quad g'(\eta) \to 0, \quad \theta(\eta) \to 0. \]

Here \(C = \frac{V_0}{U_0} \) is the ratio parameter. The skin friction coefficient along the directions of \(x \) and \(y \) are \(C_{fx} = \frac{2\tau_w}{\rho U_0^2} \) and \(C_{fy} = \frac{2\tau_w}{\rho U_0^2} \left[\frac{1}{\rho} \right] C_{fx} Re_x^{1/2} = C \left(1 + \frac{1}{\beta} \right) g'(0) \). \(\eta x = \frac{x U_0}{k(T_w-T_0)} \) is the local Nusselt number, where \(q_w = -K \frac{\partial T}{\partial x} \bigg|_{x=0} \) is the rate of heat transfer.

3 Methods of Solution

The governing equations with boundary equations are solved numerically by using finite difference scheme known as Keller box method which is described by Cebeci and Bradshaw [25]. This method involves the following steps.

Step1: Reducing higher order ODEs (systems of ODES) into systems of first order ODEs.
Step2: Writing the systems of first order ODEs into difference equations using central difference scheme.
Step3: Linearizing the difference equations using Newton’s method and writing it in vector form.
Step4: Solving the system of equations using block elimination method.

4 Numerical Discussion

In this study to obtain numerical solution we have used Matlab software and the step size we considered as \(\Delta \eta = 0.01 \). The following Table 1 shows that the comparison between values of the skin friction coefficient by present method and that of Nadeem et al. [26] in the absence of \(Pr, \lambda \) and \(Q \).

5 Results and Discussion

In this paper, we used the values of parameters \(M=0.5, \quad Pr=0.72, \quad \lambda=0.1, \quad Q=0.1, \quad \beta=0.2, \quad C=0.1 \) for throughout graphical representations unless otherwise mentioned.

Fig. 2 illustrates the influence of magnetic parameter \(M \) on the velocities \(f'(\eta) \) and \(g'(\eta) \). As the value of \(M \) increases, velocity decreases due to Lorentz force. Therefore the boundary layer thickness decreases. Fig. 3 shows the effect of Casson parameter \(\beta \) on velocity profiles \(f'(\eta) \) and \(g'(\eta) \). An increase in \(\beta \) leads to an increase in plastic dynamic viscosity that creates resistance in the fluid flow. Therefore we analyzed that the velocities of the fluid and their boundary layer thickness are decreasing functions of \(\beta \). Fig. 4 explains that the effect of Prandtl number on the temperature profile. The fluids with high Prandtl number have low thermal diffusivity. Increasing the Prandtl number gives rise to a decrease in temperature.

Fig. 5 depicts the effect of velocity ratio parameter \(C \) on \(f'(\eta) \) and \(g'(\eta) \). An increase in ratio parameter decreases the boundary layer thickness for \(f'(\eta) \) and increases \(g'(\eta) \). Physically when \(C \) increases the stretching rate increases in the \(y \)-direction. Thus the velocity increases in the \(y \) direction. Her \(C=0 \) represents two dimensional case. If \(C=1 \) the behaviour of the flow along both the directions is same.

Fig. 6 shows that effect of heat source (or sink) parameter \(Q \) on temperature profile. In general heat generation parameter in the fluid increases the temperature. Therefore we have seen that an increase in \(Q \) enhances the thermal boundary layer thickness and temperature. Fig. 7 demonstrates that influence of the mixed convection parameter \(\lambda \) on the profile of velocity. It is observed that the velocity profile increases as the value of \(\lambda \) increases due to buoyancy effect.
Fig. 2. Velocity profile for various values of M

Fig. 3. Velocity profile for various values of β

Fig. 4. Temperature profile for various values of Pr

Fig. 5. Velocity profile for various values of C

Fig. 6. Velocity profile for various values of Q

Fig. 7. Velocity profile for various values of λ.
Table 1. Comparison of results for $-\left(1 + \frac{1}{\beta}\right)f''(0)$ and $-\left(1 + \frac{1}{\beta}\right)g''(0)$ with previous available data

<table>
<thead>
<tr>
<th>M</th>
<th>β</th>
<th>Nadeem et al. (When $C=0.5$)</th>
<th>Present method (when $C=0.5$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1</td>
<td>4.7263</td>
<td>2.3276</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>3.6610</td>
<td>1.8030</td>
</tr>
<tr>
<td>∞</td>
<td>1.6459</td>
<td>1.6459</td>
<td>1.6459</td>
</tr>
</tbody>
</table>

6 Conclusions

The graphical representations of three-dimensional MHD Casson fluid flow over an exponential stretching sheet were discussed. We have the following observations.

- The velocity increases with increasing values of the magnetic parameter M and Casson parameter β.
- An increase in the Prandtl number Pr decreases the temperature profile.
- With increasing values of the ratio parameter C decreases the velocity profile $f'(\eta)$ and increases the velocity profile $g'(\eta)$.
- Increase in heat source (or sink) parameter increases the temperature.
- The velocity profile increases, as the value of λ increases.

Competing Interests

Authors have declared that no competing interests exist.

References

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar)
http://sciencedomain.org/review-history/16934