Association between Major Non-communicable Diseases Risk Factors and Fasting Blood Glucose in Iran: Comparison of Two Techniques, with and Without Dichotomizing the Response

Razieh Bidhendi Yarandi¹, Mehdi Rahgozar², Jalil Koohpayehzadeh³, Ali Rafei⁴, Fereshteh Asgari⁵ and Enayatollah Bakhshi²*

¹Student Research Committee, Department of Biostatistics, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
²Department of Biostatistics, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
³Head of NCD Surveillance Office, Center for Disease Control, Ministry of Health and Medical Education, Tehran, Iran.
⁴Research assistant at Non-Communicable Diseases Risk Factors Surveillance office, Center for Diseases Control, Ministry of Health and Medical Education, Tehran, Iran.
⁵Center for Diseases Control, Ministry of Health and Medical Education, Tehran, Iran.

Authors’ contributions

This work was carried out in collaboration between all authors. Author EB originated the idea for this study designed the study and wrote the protocol. Authors RBY and EB performed the statistical analysis and wrote the first draft of the manuscript. Author MR co-ordinated the research project. Authors JK, FA and AR helped and prepared the data. All authors read and approved the final manuscript.

ABSTRACT

Background: Dichotomizing a continuous outcome variable is a common approach to estimate the odds ratio (OR) as a measure of association. In the present study we aimed to compare a non-dichotomizing technique with logistic regression which exploits dichotomizing the response for estimating OR.

Method: Data including a total of 17,152 Iranian individuals aged 25–65 years were derived from the third national survey of non-communicable Diseases Risk Factors in...
Iran. To measure the associations between fasting blood glucose and attributed risk factors two distinct techniques were used. Using a non-dichotomizing technique, an approach proposed by B.K. Moser and L. Coombs (2004) was employed to estimate odds ratios and associated 95% confidence intervals (CI{s}). A binary logistic regression model was also applied to fit the data as a common dichotomizing approach. Finally the results of two methods were compared by use of relative efficiencies and relative length of CIs.

Results: The odds ratios provided by both approaches are approximately the same, but relative efficiencies and relative length of CIs are greater than 2 which reflected better results for the technique used a non-dichotomizing approach compared to Logistic Regression Model.

Conclusions: Dichotomizing continues outcome variable is not necessary to estimate OR{s}, especially when there is no pre-specified optimal cut-off point for the response variable.

Keywords: Non-dichotomizing; logistic regression model; odds ratio.

ABBREVIATIONS

- **DM:** Diabetes Mellitus
- **IDF:** International Diabetes Federation
- **NCD:** Non-Communicable Disease
- **T2DM:** Type 2 Diabetes Mellitus
- **WC:** Waist Circumference
- **MET:** Metabolic Equivalent
- **SuRFNCD:** The National SUrveillance of Risk Factors of Non-Communicable Diseases
- **KDM:** Known Diabetes Mellitus
- **WDICH:** Without Dichotomizing Method
- **CDC:** Center for Disease Control of Iran
- **FBG:** Fasting Blood Glucose

1. INTRODUCTION

As the 21th century unfolds, Diabetes mellitus (DM) has remained as a vital area of concern to public health throughout the world. DM is currently ranked among the top twelfth leading causes of death worldwide by undertaking 1.9% of the Global Burden of Diseases. Moreover, it is estimated 1.1 million people die annually due to DM in which 80% of them belong to developing countries [1]. According to the International Diabetes Federation (IDF), 366 million people suffered from DM in 2011 and expected to reach 552 million by 2030 [2]. In Iran DM is the seventh cause of mortality by killing 7 individuals per 100,000 [3]. Along with the global trend, DM is dramatically growing in Iran. As within just two years, one percent increase was detected from 7.7% in 2005 to 8.7% in 2007 [4,5]. In addition Type 2 Diabetes Mellitus (T2DM) consumes more than 8.69% of total health expenditure in Iran [6]. Although the causes of DM are complicated, a number of risk factors have been recognized to be highly associated with it. Unhealthy diet; physical inactivity, overweight and obesity are taking into account as major causes of diabetes. The phenomena of urbanization and alteration of age pattern are real concerns. With the aging of the baby-boom generation and increases in life expectancy Iranian population is growing older. Aging is associated with adverse changes in glucose tolerance and increased risk of diabetes; the increasing prevalence of diabetes
among older adults suggests a clear need for effective diabetes prevention approaches for this population [7]. Family history of diabetes plays a significant role in suffering from diabetes; it has long been known that T2DM is partly inherited. Family studies have disclosed that first degree relatives of individuals with T2DM are about 3 times more likely to develop the disease than individuals without a positive family history of the disease [8]. Blood lipids especially cholesterol, has been detected as the one of T2DM risk factors [9]. Diabetes and hypertension frequently coexist. It is a common risk factor in patients with diabetes, and occurs in 75% of patients with the more prevalent form of T2DM [10].

Most of the clinical response variables are continuous such as blood glucose, blood pressure, body mass index and so on. Too study these variables a common statistical method is to determine a cut-off point and categorizing original data to implement logistic regression. There are several reasons to do this, such as easier interpretation of odds ratios, better representation of the phenomenon under study by dichotomizing the outcome variable in two or more categories and specific clinical definition of the range of continuous outcome variable (e.g., fasting blood glucose over 126 mg/dl is treated as an at risk diabetes). Despite these advantages, using this method arouses some statistical controversies [11-18]. Determining a proper cut-off point is a great challenge for clinicians in a way that most of the time this is a subjective choice not an objective one. It is proved that the statistical power and the magnitude of Odds Ratio (OR) depend on the cut-off point which provoke potential biases and different results due to subjective choice of cut-off point [19]. Practically by dichotomizing original data we discard some information, on the other hand it is necessary to increase sample size to reach to the pre-specific power which increase the cost of experiments. Also loss of statistical efficiency happens in the process of dichotomizing. Misclassification of data and borderlines could be misleading to over evaluate associations between factors under study.

In the present study we aimed to compare an alternative non-dichotomizing technique with logistic regression which exploits dichotomizing the response for estimating ORs.

2. MATERIALS AND METHODS

2.1 Data Source

Data for the present study were derived from the third round of the survey of Non-Communicable Diseases Risk Factors Surveillance in Iran [20]. This population-based cross-sectional study was conducted in 2007 by Iran Center for Diseases Control (CDC) based on the STEP wise approach of WHO [9,21]. A total sample of 24,000 non-institutionalized Iranian adults aged between 25 to 64 years was taken through a stratified cluster random sampling scheme. Participants were eventually interviewed at their homes by trained healthcare workers from 43 medical schools and a blood sample was taken after receiving a verbal informed consent. After excluding pregnant women, controlled diabetics who care their Fasting Blood Glucose (FBG<126 mg/dl) by taking drug, and those with missing information, analysis was performed on a sample of 17,152 Iranian adults.

2.2 Measurements and Variables

Interview phase of the study was performed using a standard questionnaire measuring demographic, behavioral and physical risk factors proposed by WHO. Biochemical risk factors including FBG and total cholesterol was recorded in the subsequent phase. FBG (mg/dl) was
treated as the main response variable of the study. Age (year), residential area (rural/urban), hyper cholesteremia (total cholesterol ≥200 mg/dl), hypertension (systolic blood pressure ≥140 and), low level of physical activity (total physical activity ≤600 MET-Minute per week), vigorous level of physical activity (total physical activity ≥1,600 MET-Minute per week), it is calculated according to WHO guide lines, MET (Metabolic Equivalent) values are applied to vigorous and moderate intensity variables in the work, transport and recreation domains. These have been calculated using an average of the typical types of activity undertaken. Calculating total physical activity and different types of activities have been grouped together and given a MET value based on the intensity of the activity, waist circumference (cm), vegetable intake (servings per day), family history of diabetes were considered as independent variables.

2.3 Overview of Without Dichotomizing Method Proposed by B. K. Moser and L. Coombs (WDICH)

According to the method proposed by Moser and Coombs [22], it is assumed that a random sample of observations \((Y_1, Y_2, \ldots, Y_n)\)' where \(Y_i, X_i\) and \(\beta\) are related through the regression equation

\[
Y_i = \beta X_i' + E_i
\]

for \(i=1,2,\ldots,n\) and where the \(P \times 1\) vector of explanatory variable \(X_i \sim (1, X_{i1}, X_{i2}, \ldots, X_{ip-1})'\) and \(E_i\) are independent and identically distributed logistic random variable with mean 0 and variance \(\sigma^2 > 0\). Moser and Coombs supposed that the random \(E_i\) terms follow a logistic distribution and explanatory variables \(X_i\) follow a discrete uniform distribution. They provided an estimate of the same odds ratio Parameter as the logistic method, but without discarding information [23]. An estimated of odds ratio parameter \(O_j\) is given by

\[
O_j = \exp \left(\frac{j\hat{\beta}}{\delta} \right)
\]

Where

\[
\hat{\beta} = \left(\hat{\beta}_y, \ldots, \hat{\beta}_{y-1}, \hat{\beta}_{-1} \right)' = (XX')^{-1}XY
\]

(3) for \(j=0,\ldots, p-1\) and

\[
\delta^2 = \frac{VY}{n-p}
\]

(4)

Where the \(n \times n\) matrix

\[
\Lambda = I_n - (XX')^{-1}X'
\]

(5)

Relative efficiency of OR by using WDICH approach represent as

\[
\text{r.e.}(OR_{WDICH}, OR_{LRM}) = \frac{\text{Var}(OR_{LRM})}{\text{Var}(OR_{WDICH})} = \frac{\hat{\delta}^2_{\theta j}}{\hat{\delta}^2_{\theta j}}
\]

(6)

Where \(\hat{\delta}^2_{\theta j}\) is the estimation of variance of \(j+1\) st coefficient by LRM, \(\lambda \approx 1.8138\) and \(\delta_{\theta j}\) is the \(j+1\) st diagonal element of \((XX')^{-1}\).
2.4 Statistical Analysis

Fasting Blood Glucose (FBG) was treated as a continuous outcome variable. We fitted a linear regression model proposed by Moser then by the use of equation (2) we transfer estimated coefficients to the estimated odds ratio corresponding to β_j. In other words the odds ratios as the measures of association between diabetes and age, Place of residence, waist circumference, cholesterol, hypertension, vegetable intake, physical activity and family history of diabetes were estimated by using WDICH method. Moreover, the common logistic Regression Model (LRM) was implemented to obtain ORs by dichotomizing FBG at 126 mg/dl as the cut-off point. Analyses results were obtained using R (Version 2.14.1).

3. RESULTS

Distributions of covariates are shown in Tables 1 and 2 to make the data presentation complete.

Our results showed that nearly 56.5% of population was urban citizens. It was illustrated that nearly 36.7% and 23.7% and 39.6% of people had low, moderate and vigorous level of physical activity, respectively. Nearly 21% of participants had family history of diabetes and approximately 21.6% of participants had systolic blood pressure more than 140 mg/dl and 38.3% had cholesterol level more than 200mg/dl. This study was conducted among Iranian adults with means of 41.71 years for age, 90.17 cm for waist circumference and 1.96 servings per day for vegetable intake.

Results in Table 3 draw a comparison with two regression approaches, with and without dichotomizing. Generally we found shorter CI for WDICH approach and Relative efficiency greater than 2 for all covariates. More clearly we had smaller estimated variances for each covariates, which represented statistically better results for WDICH approach.

It is illustrated that age was directly associated with diabetes (OR= 1.022 , 95% CI: 1.019-1.024), urban residence had significantly higher odds of diabetes than their rural counterparts (OR=1.196, 95% CI: 1.217-1.265), a positive association between diabetes and hypertensive participants was detected (OR=1.307,95% CI:1.209-1.403), cholesterol was found as a significant factor for diabetes (OR=1.347,95% CI:1.268 - 1.424), waist circumference (WC) as the measure of obesity had a significant relationship with diabetes (OR=1.011, 95% CI: 1.009 - 1.013), having family history of diabetes had a profound influence on diabetes (OR=1.840, 95 %CI: 1.719- 1.970), the odds ratio of vegetable intake for diabetes was reported (OR=.998, 95 %CI:.983- 1.0129). Finally, there was an association between physical activity and diabetes. By using low as the reference group, diabetes odds ratios were 0.949 (95% CI: .884-1.020) and 0.859 (95 % CI: .807-.9158) for the moderate and vigorous levels, respectively.
Table 1. Descriptive characteristics of categorical variables for (SuRFNCD-2007)

<table>
<thead>
<tr>
<th>Factor</th>
<th>Number</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential Area</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rural</td>
<td>7,453</td>
<td>43.5</td>
</tr>
<tr>
<td>Urban</td>
<td>9,699</td>
<td>56.5</td>
</tr>
<tr>
<td>Physical Activity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>6,296</td>
<td>36.7</td>
</tr>
<tr>
<td>Moderate</td>
<td>4,067</td>
<td>23.7</td>
</tr>
<tr>
<td>Vigorous</td>
<td>6,789</td>
<td>39.6</td>
</tr>
<tr>
<td>Family History</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>13,627</td>
<td>79.4</td>
</tr>
<tr>
<td>Yes</td>
<td>3,525</td>
<td>20.6</td>
</tr>
<tr>
<td>Blood Pressure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>13,447</td>
<td>78.4</td>
</tr>
<tr>
<td>Hypertensive</td>
<td>3,705</td>
<td>21.6</td>
</tr>
<tr>
<td>Cholesterol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>10,557</td>
<td>61.3</td>
</tr>
<tr>
<td>Hypercholesteremic</td>
<td>6,575</td>
<td>38.7</td>
</tr>
</tbody>
</table>

Table 2. Descriptive characteristics of continuous variables for (SuRFNCD-2007)

<table>
<thead>
<tr>
<th>Factor</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>44.86</td>
<td>11.44</td>
</tr>
<tr>
<td>Women</td>
<td>44.58</td>
<td>11.15</td>
</tr>
<tr>
<td>Total</td>
<td>44.71</td>
<td>11.29</td>
</tr>
<tr>
<td>Waist Circumference</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>89.63</td>
<td>12.84</td>
</tr>
<tr>
<td>Women</td>
<td>90.51</td>
<td>13.98</td>
</tr>
<tr>
<td>Total</td>
<td>90.17</td>
<td>13.45</td>
</tr>
<tr>
<td>Vegetable Intake</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>1.98</td>
<td>1.97</td>
</tr>
<tr>
<td>Women</td>
<td>1.94</td>
<td>1.67</td>
</tr>
<tr>
<td>Total</td>
<td>1.96</td>
<td>1.82</td>
</tr>
</tbody>
</table>
Table 3. Odds ratios for diabetes and their CI using two approaches for (SuRFNCD-2007)

<table>
<thead>
<tr>
<th>Variables</th>
<th>LRM(^1)</th>
<th>WDICHM(^2)</th>
<th>Relative Efficiency</th>
<th>Relative length of CI(LRM/WDICHM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR(^3)</td>
<td>95% CI(^4)</td>
<td>OR</td>
<td>95% CI</td>
</tr>
<tr>
<td>Age</td>
<td>1.05</td>
<td>1.043-1.057</td>
<td>1.022</td>
<td>1.019-1.025</td>
</tr>
<tr>
<td>Residential area</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rural</td>
<td>1.00</td>
<td>----</td>
<td>1.00</td>
<td>----</td>
</tr>
<tr>
<td>Rural</td>
<td>1.35</td>
<td>1.188-1.538</td>
<td>1.196</td>
<td>1.215-1.265</td>
</tr>
<tr>
<td>Hypertension</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>1.00</td>
<td>----</td>
<td>1.00</td>
<td>----</td>
</tr>
<tr>
<td>Hypertensive</td>
<td>1.561</td>
<td>1.367-1.781</td>
<td>1.307</td>
<td>1.209-1.403</td>
</tr>
<tr>
<td>Cholesterol</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>1.00</td>
<td>----</td>
<td>1.00</td>
<td>----</td>
</tr>
<tr>
<td>Hypercholesteremia</td>
<td>1.506</td>
<td>1.333-1.703</td>
<td>1.344</td>
<td>1.268-1.424</td>
</tr>
<tr>
<td>Waist Circumference</td>
<td>1.024</td>
<td>1.019-1.028</td>
<td>1.011</td>
<td>1.009-1.013</td>
</tr>
<tr>
<td>Family History of diabetes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>1.00</td>
<td>----</td>
<td>1.00</td>
<td>----</td>
</tr>
<tr>
<td>Yes</td>
<td>3.163</td>
<td>2.792-3.582</td>
<td>1.840</td>
<td>1.719-1.970</td>
</tr>
<tr>
<td>Physical Activity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>1.00</td>
<td>----</td>
<td>1.00</td>
<td>----</td>
</tr>
<tr>
<td>Moderate</td>
<td>0.890</td>
<td>0.765-1.035</td>
<td>0.950</td>
<td>0.884-1.020</td>
</tr>
<tr>
<td>Vigorous</td>
<td>0.760</td>
<td>0.660-0.876</td>
<td>0.860</td>
<td>0.807-0.916</td>
</tr>
<tr>
<td>Vegetable Intake</td>
<td>0.983</td>
<td>0.945-1.016</td>
<td>0.998</td>
<td>0.983-1.013</td>
</tr>
</tbody>
</table>

\(^1\)Logistic Regression
\(^2\)Without DIC Hotomizing Method
\(^3\)Odds Ratio
\(^4\)95% Confidence Interval
4. DISCUSSION

Dichotomizing a continuous outcome variable arouse statistical challenges, it could prove costly by discarding information and increasing sample size. In this study we showed that WDICH approach produce better results from statistics point of view, the other study demonstrated the same results [23, 24]. We obtained approximately the same estimation of OR for both LRM and WDICH, but relative length of CI showed shorter CI for OR, also relative efficiency found smaller variance for OR estimation by implementing WDICH method, which statistically speaking showed the superiority of this approach.

Drastic demographic changes in Iranian population open a new gate of study on health area. By 2050, it is estimated that 21.7% of the Iranian population will be aged 60 and above, compared to 5.2% in 2000[25]. Many studies has shown that aging increases the risk of diabetes(7) we detected this positive association in Iranian population too. The urbanization phenomenon as the consequence of industrialization by the migration of people from rural to urban areas may account in part for the increasing prevalence of type 2 diabetes mellitus in developing countries. Positive association was found in this study too. our result was consistent with the other studies [26]. Lifestyle modification seems to be making obesity a severe common problem in the country. It increases the risk of developing T2DM. [27]. We used waist circumference as a measure of obesity to show this relationship .Our result also detected that increasing of WC has a significant association with T2DM which was similar to previous studies [28-30].

Vegetable intake may have an inverse association with diabetes in Iran, with (OR=0.998, 95 %CI: .983-1.013). Unfortunately low vegetable intake has been detected in Iranian population compare with some other developing and most of the developed nations, About 87·5% of Iranian adults consumed less than the WHO-recommended daily intake which is defined as intake of less than five servings of fruit and/or vegetable daily (88·4% of men and 86·6% of women) [31]. Education which could be effective on income and socioeconomic status has been shown to have one of the strongest influences on fruit and vegetable intake. Studies in the United States and France among adults declare this [32]. Low level of education can affect vegetable intake due to the adoption of inadequate dietary habits. In addition, low socioeconomic groups generally have a more restrictive food budget, and prefer more energy dense and satisfying foods. As in many developing countries, Iran is facing rapid nutritional transition. Taking high caloric and low fiber foods has been prevalent in our community since the last decade [33]. Then, fruit and vegetable consumption will decrease more and more in future [34]. Furthermore, our findings indicate a significant inverse association between physical activity and diabetes which were consistent with some other studies [35,36]. For communities in a transition phase of lifestyle, industrialization and sedentary lifestyle, could be the major threads; lifestyle modification by encouraging physical activity may help to prevent diabetes and its adverse consequences [37]. The trend of unhealthy lifestyle leads to high intake of fatty foods and it would be the main cause of cholesterol disorders, diabetes was clearly associated with high cholesterol [38].Family history of diabetes plays a significant role in suffering from diabetes; it has long been known that T2DM is, in part, inherited. Family studies have revealed that first degree relatives of individuals with T2DM are about 3 times more likely to develop the disease than individuals without a positive family history of the disease [8]. We estimated a positive association between family history of diabetes and diabetes in Iranian population. Metabolic factors like hypertension and high cholesterol level, which are prevalent among all nations, are the challenging NCDs issues by themselves. Beside the genetic reasons the new trend of lifestyle would be the root of them. Consequently there should be mutual relationship
between these metabolic factors and Diabetes [39-41]. Diabetes and hypertension frequently coexist, leading to additive increases in the risk of life-threatening cardiovascular events. Hypertension is a common comorbid condition in patients with diabetes when compared with the general population, and occurs in 75% of patients with the more prevalent form of T2DM. Prevalent hypertension among diabetics is approximately double that of non-diabetics. It is well-known that hypertension accelerates the course of micro vascular and macro vascular complications of diabetes and that hypertension often precedes type 2 diabetes and vice versa [10,42]. In addition, we detected the positive association between hypertension and diabetes in Iranian adults too. The advantages of this study include a large sample size representative of the nation, using a standardized international questionnaire whereas the main limitation of our study was its cross-sectional nature which did not allow us to assess causal relationships. This limitation also prevented any measure of temporal changes in prevalence of diabetes and factors associated with it. Longitudinal studies would complement the present study to determine causality and directional effect of the factors.

5. CONCLUSION

Dichotomizing continues outcome variable is not necessary to estimate ORs, especially when there is no pre-specified optimal cut-off point for the response variable. WDICH method could be an appropriate alternative for binary logistic regression model when the response variable is continuous. By implementing this method not only we have advantages of logistic regression such as estimating OR but also we discard its disadvantages.

CONSENT

Not applicable.

ETHICAL APPROVAL

This study is approved by the Ethic Committee of the University of Social Welfare and Rehabilitation Sciences.

ACKNOWLEDGEMENTS

No one walks alone on the journey of life. This research project would not have been possible without the support of many people. The author wishes to express her gratitude to the members of the Center for Non-Communicable Diseases control, Deputy of health, Ministry of Health and Medical Education, Iran.

COMPETING INTERESTS

The authors have declared that no competing interests exist.

REFERENCES

© 2014 Yarandi et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sciencedomain.org/review-history.php?id=372&id=12&aid=2733