Correlation of Spot Urine Protein:Creatinine Ratio with 24-hour Urinary Protein in Preeclampsia: A Cross Sectional Study

Sangappa Virupaxappa Kashinakunti1*, Manjula Rangappa2, Gurupadappa Shantappa Kallaganada3 and Kavita Hiremath1

1Department of Biochemistry, S. Nijalingappa Medical College, Navanagar, Bagalkot-587102, Karnataka, India.
2Department of Community Medicine, S. Nijalingappa Medical College, Navanagar, Bagalkot-587102, Karnataka, India.
3Department of Biochemistry, Shimoga Institute of Medical Sciences, Shimoga-577201, Karnataka, India.

Authors’ contributions

This work was carried out in collaboration between all authors. Authors SVK and GSK carried out the design and coordinated the study, participated in most of the experiments and prepared the manuscript. Authors MR and SVK provided assistance in the design of the study, coordinated and carried out all the experiments and participated in manuscript preparation. Authors MR and KH provided assistance for all experiments. All authors have read and approved the content of the manuscript.

ABSTRACT

Aims: The present study was undertaken to evaluate the diagnostic value of protein:creatinine ratio in spot voided urine sample for detection of proteinuria as compared to those of 24 hour urine sample in patients with preeclampsia, and also to determine the optimal cut-off value of protein:creatinine ratio with best sensitivity and specificity for the prediction of significant proteinuria.

Study Design: Cross sectional study.
Place and Duration of the Study: The study was conducted at teaching hospital in North Karnataka, India. The study was conducted from Jan 2012 to February 2013.

Methods: This study was conducted on 52 preeclampsia patients. The 24 hour urine protein and random urine protein:creatinine ratio was determined. Pearson’s correlation, sensitivity and specificity were determined using 24-hour urinary protein as a gold standard for spot urine protein:creatinine ratio. Receiver operators characteristic (ROC) curve and area under curve was also determined using SPSS (11.5) software. All the results were expressed in mean±SD.

Results: Fifty two preeclampsia patients participated in this study. The average 24 hour urinary protein was 1643.3±2079.5 mg/day. The spot urine protein:creatinine ratio was 1.47±1.68. There was a positive correlation between 24 hour urinary protein and spot urine protein:creatinine ratio (r = 0.86, P<0.0001). The area under the receiver operators characteristic curve for urine protein:creatinine ratio at various cut-off was 0.914 (95% confidence interval: 0.800-0.975, P<0.0001). The sensitivity and specificity was 71.5% and 100% respectively at protein:creatinine ratio cut-off of 0.66.

Conclusion: The random urine protein:creatinine ratio predicts the amount of 24-hour urinary protein excretion with high accuracy. Hence it can be used as a faster diagnostic substitute for 24-hour urinary protein estimation in preeclampsia.

Keywords: Preeclampsia; 24-hour urine protein; urine protein:creatinine ratio.

1. **INTRODUCTION**

Pre-eclampsia (PE) has been named the "disease of theories" and was described as early as 3000 years ago by the ancient Egyptians. PE is a pregnancy specific disorder, most common, serious multisystem disease and is only cured by delivery [1-5]. According to the International Society for the Study of Hypertension in Pregnancy, PE can be defined as de novo hypertension occurring after 20 weeks of gestation associated with proteinuria, with previously normotensive and nonproteinuric women. Hypertension is defined as a systolic blood pressure ≥140 mmHg and/or a diastolic blood pressure ≥ 90 mmHg measured at two occasions with at least 4 hours apart and proteinuria is defined as ≥ 300 mg per day [6]. The PE has two stages. The first stage is an altered formation of the placenta. The second stage is characterised by clinical manifestations, which include hypertension and proteinuria, seen from 20 weeks of gestation and above [7-9].

Proteinuria is because of two mechanisms 1) The abnormal transglomerular passage of proteins due to damage to glomerular capillary wall which becomes permeable to high molecular weight proteins and 2) because of increased concentration of proteins in tubular lumen which crosses the reabsorption capacity of epithelial cells of the proximal tubuli and damages them [5]. Proteinuria is defined as the protein in urine, the amounts exceeding 0.3 g in a 24 hour urine collection or in concentrations more than 1 g per litre (+ on urine dipstick), in two random samples that are collected at least four hours apart. When protein excretion exceeds these levels in pregnant women, it is considered abnormal and a sign of PE [2,5,10,11].

Proteinuria in PE is usually done by routine simple visual dipstick urine analysis of a voided midstream sample. The dipstick is inexpensive, easy to use, and provides a rapid result but has been shown to have low sensitivity and specificity, inaccurate, high false positive and negative results over 24 hour urine protein [2,11].

Urine collection over 24 hours is the gold standard method and considered the traditional method for quantification of proteinuria in pregnancy, but has several limitations [11-14]. Mitchell et al. [15] had to discard 20% of the samples because of incomplete collection; Chitalia et al. [16] in their study had to discard 10% of the 24 hour urine samples because of similar cause. Also, it may not be possible to complete the urine collection if delivery occurs [11]. The results are not available to the clinician before 24 hours, delay in clinical diagnosis and ideal strategy for the immediate management of hypertension during pregnancy [17] that results in prolonged hospital stay, thereby increasing patient anxiety and healthcare costs [2,11]. The protein excretion during the day varied from 100% to 500%. This variation is attributed to several factors like variation in water intake and excretion, rate of diuresis, physical exercise, recumbency and diet intake. The variation may be further exacerbated by changes in blood pressure and renal pathology [18]. Thus, Newman et al. [19] found that the mean...
intraindividual variation in the P:C ratio was 38.6%, whereas that of the protein excretion was 96.5%. Koopman et al. [20] also found similar results.

There is a need of an alternative method which is rapid, as well as a valid and accurate test to identify significant urinary proteinuria. Sufficient evidence from studies show a strong association between random P:C ratio and 24 hour protein excretion, and the International Society for the Study of Hypertension in Pregnancy has accepted this test as a method for identification of significant proteinuria. However, a consensus has been poorly described and standardized, to be used in clinical practice, specifically in ethnic group with suspected PE [11,12].

Estimation of total protein in spot urine sample, avoids the 24-hour urine collection, but is largely influenced by the body hydration. This variation can be eliminated by factoring the spot urine total protein concentration by urine creatinine concentration, i.e. the urine P:C ratio. Random urine sampling for P:C ratio would be more acceptable and less time consuming. The P:C ratio takes into account the fact that urinary creatinine excretion remains fairly constant in presence of a stable glomerular filtration rate. The protein excretion would also be fairly stable. Therefore, the ratio of the two in a single voided sample would reflect the cumulative protein excretion over the day, as the two stable rates would cancel out the time factor. Measurement of total P:C ratio on random (spot) urine sample correlates well with 24 hour total protein excretion [18,21,22].

In this context, the present study was undertaken to evaluate the diagnostic value of P:C ratio in spot voided urine sample for detection of proteinuria as compared to those of 24 hour sample in patients with PE, and also to determine the optimal cut-off value of P:C ratio with best sensitivity and specificity for the prediction of significant proteinuria.

2. MATERIALS AND METHODS

The study was conducted on PE subjects admitted in Hanagal Shri Kumareshwara hospital, Bagalkot. The study was approved by S. Nijalingappa Medical College ethical committee. Informed consent was obtained. The study was conducted from Jan 2012 to February 2013. Singleton pregnant women with more than 20 weeks of gestation were included on the basis of clinical findings, new- onset proteinuria of ≥1+ on urinary dipstick, hypertension (≥140/90,≤160/110), and/or oedema (International Society for the Study of Hypertension in Pregnancy). Detailed history taking and clinical examination were carried out. Patients with urinary tract infection, hematuria, chronic renal failure, glomerular nephritis due to other systemic conditions, previously existing hypertension, diabetes mellitus were excluded from the study.

The sample size was calculated using Open epi software, version 2.3.1. According to the study done by Pacarizi H [23], the mean ± SD of blood urea nitrogen and creatinine index in controls and cases were 12±3 and 19±7.7 respectively. At 95% of confidence level and 80% power of the study, the sample size was calculated to be 52. A total number of 84 patients were selected for the study but 27 patients did not turn-up and 57 subjects participated in the present study. Five participants were excluded from the study, because of improper collection of 24-hour urine, and finally, the study was stopped when we got 52 PE patients, which was the required sample size. For each patient, a random urine collection was collected for the calculation of the P:C ratio. All random samples were collected before the 24-hour urine collections. Twenty four hour urine sample was collected by instructing subjects to begin collection immediately after completion of first voiding in morning and to collect all urine into same container having 5mL of 10% thymol in isopropanol as a preservative for 24 hours, including final void at completion of 24 hour period [24]. This was thoroughly mixed and a sample of 2 mL was taken for evaluation of proteins. Total volume was noted and calculation was done for 24 hours. Urinary protein quantification was determined by turbidometric method, and urinary creatinine was determined by the modified Jaffe reaction, kits were supplied by Biolab Diagnostics (I) and Pvt Ltd and CPC diagnostics Pvt Ltd India, respectively. P:C ratio was calculated by dividing the urinary protein concentration by urinary creatinine concentration. Proteinuria ≥ 300 mg in 24-hour urine sample was considered as significant proteinuria [22].

2.1 Statistical Analysis

Statistical package for social science (SPSS for window version; SPSS, 11.5 Inc, Chicago IL) software was used for statistical analysis. Pearson’s correlation coefficient was used to show the correlation between the spot urine P:C ratio and 24 hour urine total protein. Sensitivity,
specificity, predictive values of random urine P:C ratio at various cut-off values were evaluated using 24 hour urine total protein level as the gold standard. Receiver operator characteristic (ROC) curves were evaluated to determine an optimal P:C ratio value that maximized the sensitivity and specificity in identification of significant proteinuria that was based on 24-hour urine collections. Area under the curve was calculated. All the results were expressed as mean±SD.

3. RESULTS

The general characteristics like blood pressure and biochemical parameters of the study subjects are shown in Table 1. The mean age was 28.1±4.88 years. The mean gestational age was 33.5±4.40 weeks. The systolic and diastolic blood pressures met the diagnostic criteria of preeclampsia. Serum Urea and blood urea nitrogen (BUN) were within normal limits, whereas serum creatinine and uric acid were slightly higher than the normal range.

Table 2 shows the correlation between the 24 hour urine protein and various biochemical parameters in blood and urine P:C ratio. There is a positive correlation between urine P:C ratio and 24 hour urine protein (Fig. 1). BUN, Serum Urea and Serum Uric acid had statistically significant (P<0.05) positive correlation with 24 hour urine protein. Serum creatinine was also positively correlated with 24 hour urine protein, but was not statistically significant.

Sensitivity, specificity, predictive values of random urine P:C ratio at various cut-off values were evaluated using 24 hour urine total protein level as the gold standard. A receiver operator characteristics (ROC) curve was determined. The area under the ROC curve for random urine P:C ratio at various cut-off was 0.914 (95% confidence interval, 0.800-0.975; P<0.0001) (Fig. 2). Sensitivity and specificity of P:C ratio to detect proteinuria at various cut-off values is shown in Table 3. A sensitivity of 71.05% and specificity of 100% were achieved to detect proteinuria at P:C ratio greater than 0.66. At cut-off value of greater than 0.12, sensitivity was 100% but specificity reduced to 25%.

4. DISCUSSION

In the present study BUN, Serum Urea and Serum Uric acid were positively correlated with 24 hour urine protein which was found to be statistically significant (p < 0.05). Nischintha S et al. [25] in their study found statistically significant correlation between P:C ratio and Serum uric acid (r=0.355, P<0.002). In the present study, serum creatinine was also positively correlated with 24 hour urine protein, but it was not statistically significant, this can be overcome by further study with large sample size.

Table 1. General characteristics of study subjects

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Mean±SD</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>28.1±4.88</td>
<td>20.00</td>
<td>38.00</td>
</tr>
<tr>
<td>Gestational (weeks)</td>
<td>33.5±4.40</td>
<td>21.00</td>
<td>39.00</td>
</tr>
<tr>
<td>SBP (mmHg)</td>
<td>163.4±20.2</td>
<td>140.00</td>
<td>240.00</td>
</tr>
<tr>
<td>DBP (mmHg)</td>
<td>106.4±10.8</td>
<td>90.00</td>
<td>140.00</td>
</tr>
<tr>
<td>Urea (mg/dl)</td>
<td>18.7±8.38</td>
<td>10.00</td>
<td>43.00</td>
</tr>
<tr>
<td>Creatinine (mg/dl)</td>
<td>0.82±0.28</td>
<td>0.50</td>
<td>1.70</td>
</tr>
<tr>
<td>Uric acid (mg/dl)</td>
<td>4.9±1.44</td>
<td>1.20</td>
<td>9.40</td>
</tr>
<tr>
<td>BUN (mg/dl)</td>
<td>8.7±3.9</td>
<td>4.67</td>
<td>20.09</td>
</tr>
<tr>
<td>24 hr urine protein (mg/24 hours)</td>
<td>1843.3±2079.5</td>
<td>116</td>
<td>8536</td>
</tr>
<tr>
<td>P:C ratio</td>
<td>1.47±1.68</td>
<td>.10</td>
<td>5.90</td>
</tr>
</tbody>
</table>

SBP: Systolic Blood Pressure; DBP: Diastolic Blood Pressure; BUN: Blood Urea Nitrogen; P:C ratio: Protein:Creatinine ratio

Table 2. Correlation between various biochemical parameters and 24 hour urine protein levels

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Correlation coefficient (r)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urine P:C ratio</td>
<td>0.86</td>
<td>0.0001</td>
</tr>
<tr>
<td>BUN</td>
<td>0.32</td>
<td>0.02</td>
</tr>
<tr>
<td>Serum urea</td>
<td>0.32</td>
<td>0.02</td>
</tr>
<tr>
<td>Serum creatinine</td>
<td>0.20</td>
<td>0.14</td>
</tr>
<tr>
<td>Serum uric acid</td>
<td>0.30</td>
<td>0.03</td>
</tr>
</tbody>
</table>

BUN: Blood Urea Nitrogen; P: C ratio: Protein:Creatinine ratio
Fig. 1. Correlation between 24 hour urine protein excretion and urine P:C ratio

Table 3. Criterion values and coordinates of the ROC curve

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Sensitivity</th>
<th>95% CI</th>
<th>Specificity</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>>=0.1</td>
<td>100</td>
<td>90.7 - 100.0</td>
<td>0</td>
<td>0.0 - 26.5</td>
</tr>
<tr>
<td>>0.12</td>
<td>100</td>
<td>90.7 - 100.0</td>
<td>25</td>
<td>5.5 - 57.2</td>
</tr>
<tr>
<td>>0.16</td>
<td>97.37</td>
<td>86.2 - 99.9</td>
<td>41.67</td>
<td>15.2 - 72.3</td>
</tr>
<tr>
<td>>0.2</td>
<td>97.37</td>
<td>86.2 - 99.9</td>
<td>58.33</td>
<td>27.7 - 84.8</td>
</tr>
<tr>
<td>>0.24</td>
<td>94.74</td>
<td>82.3 - 99.4</td>
<td>58.33</td>
<td>27.7 - 84.8</td>
</tr>
<tr>
<td>>0.3</td>
<td>86.84</td>
<td>71.9 - 95.6</td>
<td>75</td>
<td>42.8 - 94.5</td>
</tr>
<tr>
<td>>0.32</td>
<td>81.58</td>
<td>65.7 - 92.3</td>
<td>75</td>
<td>42.8 - 94.5</td>
</tr>
<tr>
<td>>0.33</td>
<td>81.58</td>
<td>65.7 - 92.3</td>
<td>83.33</td>
<td>51.6 - 97.9</td>
</tr>
<tr>
<td>>0.63</td>
<td>71.05</td>
<td>54.1 - 84.6</td>
<td>83.33</td>
<td>51.6 - 97.9</td>
</tr>
<tr>
<td>>0.66 *</td>
<td>71.05</td>
<td>54.1 - 84.6</td>
<td>100</td>
<td>73.5 - 100.0</td>
</tr>
<tr>
<td>>5.9</td>
<td>0</td>
<td>0.0 - 9.3</td>
<td>100</td>
<td>73.5 - 100.0</td>
</tr>
</tbody>
</table>

CI: Confidence interval

Fig. 2. ROC (Receiver operator characteristics) curve showing the diagnostic ability of P:C ratio in diagnosing preeclampsia

Area under the curve (95% Confidence limits): 0.914(0.800 - 0.975), p=0.0001
Several studies on PE have already established the usefulness of the random urine P:C ratio, including some that have presented evidence of good correlation with acceptable sensitivity in predicting significant proteinuria [26-28]. Furthermore, some reports indicate maternal age, gestational age, parity and maternal body size are not confounding factors with regard to random urine P:C ratio [29]. Studies have shown a high correlation between random urinary P:C ratio in both normotensive and hypertensive pregnant women [30-32]. The current study also showed, 24 hour urine protein has statistically significant positive correlation with P:C ratio. Park JH et al. [33] in their study in Korea showed a strong correlation between the spot P:C ratio and 24 hour urine protein with correlation coefficient of 0.82 (P<0.01). Correlation coefficients reported range from 0.80 to 0.995 [34,35]. The correlation coefficient of 0.86 yielded in the present study is similar compared to other studies. In a study conducted on PE patients, the correlation between random urinary P:C ratio and 24-hour urine total protein was poor [36].

When considering PE, one would wish a replacement test to limit the number of false negative and false positive results, to avoid under detection and over monitoring of patients respectively. The optimum threshold for P:C ratio to detect significant proteinuria is between 0.30 and 0.35, relating to sensitivity and specificity values above 75% [37]. Park JH et al. [33] also found the optimal cut-off points by analyzing ROC curves for significant (≥300 mg per 24-hours) proteinuria and severe (≥5,000 mg per 24-hours) proteinuria as 0.63 and 4.68 and were found to provide optimal sensitivity and specificity for the detection of significant and severe proteinuria, respectively. The present study revealed that the random urinary P:C ratio is an outstanding test for discriminating between significant and insignificant proteinuria as demonstrated by an area under the ROC curve of 0.914. Sensitivity of 71.05% and specificity of 100% were achieved to detect proteinuria at the P:C ratio greater than 0.66. At cut-off value of greater than 0.12, sensitivity was 100% but specificity reduced to 25%. A cut-off below 0.12 ruled out significant proteinuria, however the specificity was only 25%. As shown in Table 3, to maximize the specificity while maintaining a sensitivity of ≥90%, we set our criterion of positivity as 0.66. A cut-off point of >0.66 that was suggested by the optimization of sensitivity and specificity through ROC analysis. Some reports indicate appropriate cut-off points ranging from 0.15 to 0.5 and sensitivities and specificities from 77.5% to 89.7% and from 72.6% to 80%, respectively [38]. However, some prior studies that evaluated the accuracy of random urine P:C ratio in predicting 24-hour urine protein excretion in PE reveal some conflicting results for determining an optimal cut off point for significant proteinuria. This is because of the study-to-study variability in laboratory methods for measuring proteinuria, which precludes valid comparison among the studies.

Young et al. [39] found no single value to distinguish ideally significant proteinuria after ROC analysis but found that a value of <0.15 efficiently ruled out significant pregnancy-induced hypertension. Rodriguez-Thompson and Lieberman [40] performed ROC analysis and found a high area under the curve (0.91) but were unable to identify a clear cut-off point for delineating significant proteinuria, with a cut-off point of 0.190. Durwald et al. [41] found 0.390 as “optimal” cut-off value for the P:C ratio in the detection of significant proteinuria by ROC analysis. They concluded that P:C ratio was not useful for the exclusion of significant proteinuria in women with suspected PE. Although these studies showed a strong linear association, the ROC curves did not reveal a reliable cut-off. Different cut-off points were published, which are quite different, because of the variability in the units used for cut-off points for urinary protein and urinary creatinine, such as mg/mmol, mg/ g, mg/mg, and g/g. This was more complicated further by the different populations of pregnant women and variations in the sensitivities and specificities in the studies of the spot P:C ratio [11].

In hospitalized patients, the 24-hour urine collection can be extrapolated in ambulatory patients compared to non- ambulatory patients [42]. As this study was done only in hospitalized patients, further studies are required with large sample size, including outpatients. Patients should be followed up till termination of pregnancy so as to predict the disease progression. Uniformity of units is one of the most important point that has to be followed by all researchers in the future studies.

5. CONCLUSION

Based on the results of present study, we conclude that the random urinary P:C ratio have shown significant correlation with 24-hour urine protein excretions in PE, with high accuracy. This
test could be used as a reasonable alternative to quantification of 24-hour urine protein excretion in PE.

CONSENT
Not applicable.

ETHICAL APPROVAL
All authors hereby declare that all experiments have been examined and approved by the Institutional Ethics Committee of S. N. Medical College Bagalkot, Karnataka, India.

ACKNOWLEDGEMENTS
Authors are thankful to the principal, Dr. Ashok S. Mallapur, S. N. Medical College, Bagalkot, Karnataka, INDIA, for his support. We acknowledge Dr. Anita Herur, Associate Professor, Department of Physiology SNMC, Bagalkot, Karnataka, INDIA. We are very thankful to all the participants of the study, for their cooperation.

COMPETING INTERESTS
Authors have declared that no competing interests exist.

REFERENCES
with suspected pre-eclampsia: systematic review and meta-analysis. BMJ. 2012;345:e4342.

