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ABSTRACT

Alzheimer’s disease (AD) is associated with hallmark pathologies including extracellular
Aβ protein deposition in extracellular senile plaques and vessels, and intraneuronal tau
deposition as neurofibrillary tangles.
The current study comprises the oxidative modifications associated with the pathological
lesions of neuronal damage characterized AD. The repeated exposure to aluminum and
heavy metals, mutations in a number of chromosomes and genes, diabetes,
cardiovascular diseases, obesity and brain injury, are the major causes for these
modifications.
There is clearly a need for the identification and development of panels of biomarkers for
accurate diagnosis and early detection of sporadic AD. Thus, a collection of the most
globally manifested expeditious diagnostic tools for early detection of AD is outlined in this
review. Also, a survey of the vast clinically approved therapeutic modalities for restricting
and even treating the symptoms of AD is summarized. These arguments provide useful
information in both understanding pathogenesis as well as accessing the novel treatment
approaches for AD.
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1. INTRODUCTION

1.1 Historic Perspective of Alzheimer's Disease

Alzheimer's disease (AD) was only named in the early twentieth century by German
psychologist Alois Alzheimer, but the history of AD may have started well before that.
Dementia was first documented by ancient Egyptian physicians around two thousand BC.
Also, Ancient Egyptian history, the Maxims of the Ptah Holy describes a form of AD.  In the
Greco-Roman period mental deterioration was considered by most as an inevitable
consequence of aging, and that aging itself had come to be considered a disease process.

The Franciscan friar Roger Bacon [1214 –1294] wrote the work Methods of Preventing the
Appearance of Senility, in which he commented that “in the posterior part [of the brain]
occurs oblivion and memory concerning which Haly Regalis speaks in his first theoretical
tratise, saying that old age is the home of forgetfulness” and that “An injury to the reasoning
faculty happens in the middle part of the brain. . . . An injury to the imagination occurs in the
anterior part of the brain” [1].

Chaucer [ca. 1343– 1400] commented on the inevitability of dementia: “with old folk, save
dotage, is namore” [2], and Shakespeare [1564 –1616] made numerous keen descriptions of
dementia through his characters in several plays, most famously in Hamlet and King Lear.
Shakespeare may have been more medically astute than medical writers of the time, as he
not only took note of age-related cognitive decline, but also made clear distinctions between
senile decay and “plain madness,” and commented on both the cognitive and the affective
changes that accompany senile dementia. Then, Roman physician, Claudius Galen, who
lived from 130 to 200 A.D., recounts symptoms of age-related forgetfulness in his journals.
And in fourteenth century in England, there was even a verbal test to check for forgetfulness.

Esquirol [1772–1840] gave names to newly identified subtypes and categories of mental
disorders [3,4]. By introducing systematic clinical observation and exact description using
precise terminology into psychiatry, Esquirol established the foundation of modern
classification of mental disease [4]. Esquirol characterized the difference succinctly in one of
his most widely quoted statements, that “A man in a state of dementia is deprived of
advantages which he formerly enjoyed; he was a rich man who has become poor [4].

Essentially, from the time of the ancient Greeks and Romans to the 19th century, no
sweeping progress in the conceptualization of senile dementia had been made. The broad
concept of dementia underwent some gradual refinement with the categorization of different
conditions in which dementia is found, and the narrower concept of senile dementia
(Amentia senilis) established itself as a medical entity. Abnormalities in the brain were
suspected as the source of dementia or mental aberration, and anatomists scrutinized the
brain’s gross appearance (color, texture, size of pineal, appearance of meninges, blood
vessels, color of fluid emanating from the tissue) in search of an anatomical correlate of
dementia, but to little avail. Brain atrophy accompanying Amentia senilis was not yet
remarked upon, possibly due to the heterogeneity of disorders which continued to be united
in this medical entity[1].
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Alois Alzheimer [1864 –1915] and Otto Binswanger [1852–1929] both extensively described
this arteriosclerotic brain atrophy in the 1890’s. By this time, atheromatous degeneration of
blood vessels with accompanying stroke had generally become accepted as a necessary
precursory event for the development of senile brain atrophy and senile dementia. In 1907,
using the Bielschowsky stain on the case that made him famous, Alois Alzheimer described
a startling new pathology in the brain of a recently deceased woman who died a few years
after developing a clinically unusual dementia at age 51. The novel neuropathological
feature that Alzheimer observed consisted of tangles of fibrils within the cytoplasm of
neurons, which were stained in sharp definition by the silver impregnation. In addition to the
marked neurofibrillary tangles and accompanying neuronal degeneration, Alzheimer also
noted the widespread presence of plaque pathology in the brain of this woman, similar to the
pathology extensively described in senile dementia by Fischer [1].

A recurrent issue which was fiercely debated for numerous decades was the question of
whether Alzheimer’s disease was really a unique disease entity from senile dementia. In his
1963 review on dementia, McMenemey [5] summarizes researchers’ attempts to establish
clinical and pathological criteria which would clearly delineate the two diseases.

While Alzheimer’s disease was recognized as a troublesome disorder already in the early
1900s, today it has become a major medical problem nearing catastrophic levels; increased
longevity has led to a steadily increasing population of individuals over age 65, and thus
there are ever greater numbers of individuals at risk for, and afflicted with, this disease.
Alzheimer’s disease is today recognized as the fourth or fifth leading cause of death in the
U.S., and is among the most intensely researched areas of science. In Egypt, a study that
was carried out in Assiut governorate in 1998, recorded the prevalence of AD  and other
dementing disorders as a case per 100 population over the age of 60 and the age-specific
prevalence tends to be doubled every 5 years [6].

1.2 Pathological Feature of Alzheimer's Disease

AD is a neurodegenerative disorder characterized clinically by progressive memory loss and
subsequent dementia, and neuropathologically by senile plaques, neurofibrillary tangles and
synapses loss [7]. The abnormal accumulation of extracellular amyloid-beta peptide (Aβ)
and the intracellular neurofibrillary tangles (NFTs) are believed to be responsible for the
neuronal loss and the degeneration of the cholinergic system [8]. Other essential
abnormalities are gliosis, chronic inflammation and excitotoxicity [9]. The vast majority of
patients diagnosed with AD also have cerebral amyloid angiopathy (CAA) [10].

1.3 Risk Factors for Alzheimer's Disease

The main risk factors for AD are age, age-related diseases such as cardiovascular disease,
diabetes, obesity, low educational levels, head trauma and repeated exposure to aluminum
and heavy metals such as cupper, iron and zinc [11,12]. Aluminum is a prooxidant induced
its neurotoxicity via free radical production and stimulation of Aβ oxidation. Moreover,
aluminum has been shown to be colocalized with both the amyloid plaques and the
neurofibrillary tangles in AD [13,14].
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1.4 Pathogenesis of Alzheimer's Disease

A growing body of evidence indicates that oxidative stress occurs early in the development
of AD, principally before the formation of the hallmark pathologies; neurofibrillary tangles and
senile plaques [15]. Researchers from Mayo Clinic (USA) linked late onset of AD to a locus
on chromosome 10 that affects processing of the amyloid protein to form the amyloid
plaques in the brain. Furthermore, genetic analyses of families with early-onset AD have
revealed mutations in chromosome 21, within Aβ sequence, in addition to mutations within
presenilin 1 and 2 genes. Most of these mutations lead to increased production of Aβ 1-42
and its oligomeric forms [16]. Thus, there is increasing consensus that the production and
accumulation of Aβ peptide is central to the pathogenesis of AD [17,18].

Aβ peptides, derived from proteolytic cleavage of amyloid precursor protein (APP), are
thought to be a pivotal toxic species in the pathogenesis of AD [19]. Proteolytic processing of
APP occurs through two different pathways, a non-amyloidogenic pathway and an
amyloidogenic pathway [20].

In the nonamyloidogenic pathway, the cleavage of APP is initiated by α-secretase in the
middle of Aβ peptide, thus inhibiting the generation of Aβ [21]. During this cleavage, a
soluble ectodomain of APP (sAPPα) is released and a 10 kDa C-α terminal fragment (α-
CTF) remains within the membrane [22]. The soluble ectodomain of APP is known as a
neurotrophic and neuroprotective peptide [23]. Also, a further action of γ-secretase on C-α
terminal fragment (α-CTF) generates a nonamyloidogenic peptide p3 [21]. At least 30% of
APP is processed by this pathway [24]. However, in the pathological amyloidogenic
pathway, Aβ is produced by the cleavage of APP via the action of two aspartyl proteases, β-
and γ-secretases [21]. Beta-secretase cleaves the APP, thereby generating the N-terminal
Aβ peptide [20]. The remaining membrane bound C-β terminal fragments (β-CTF) of APP
are substrates for γ-secretase. Cleavage of β-CTF at different sites by γ-secretase leads to
the formation of Aβ that varies in its length [20] and are released into extra- or intracellular
space [10]. In both pathways, APP intracellular domain (AICD) is released into the cytosol
where it participates in gene transcription. The main variants are 40 and 42 amino acids long
and are called Aβ [1–40] and Aβ [1–42], respectively [20]. Under normal conditions, about
90% of secreted Aβ peptides are Aβ40, which is a soluble form of the peptide that only
slowly converts to an insoluble β-sheet configuration and thus can't be eliminated from the
brain. In contrast, about 10% of secreted Aβ peptides are Aβ42 species that are highly
fibrillogenic and deposited early in individuals with AD [24].

The apolipoprotein E ε 4 genotype, a major genetic risk factor for AD, leads to accelerated
deposition of amyloid, and the generation of antiamyloid antibodies in humans with AD [25].
Apolipoprotein E (APOE) genotype influences the average age at which AD pathology
begins and thus may account for the risk of dementia onset that occurs later [26]. Alternate
hypotheses regarding the pathophysiology of AD place great emphasis on the potential role
of tau-protein abnormalities, heavy metals, vascular factors, or viral infections [27].

Elevated brain homocysteine level is involved in iron dysregulation/oxidative stress cycle that
has a central role in the pathogenesis of AD [28]. Also, hydrogen sulphide (H2S), a
neuromodulator agent, is severely reduced in AD as a result of reduced activity of the
enzyme cystathionine-β-synthase (CβS) which is the source of H2S in the brain. Thiol
derived amino acids such as homocysteine are electron donors in mixed function oxidation
system, acting with the transition metals iron and copper, and thus by interfering with iron
sequestration, in vivo, increases in redox-active iron in AD neurons with concomitant
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oxidative stress and subsequent accumulation of amyloid in the brain. Therefore, AD is often
associated with abnormal localization of iron regulatory proteins (IRP’s) [29]. Specifically,
alteration of IRP-2 might be directly linked to impaired iron homeostasis, leading to
neurofibrillary tangles, senile plaques and neuropil threads in AD patients.

Oxidative stress, the direct result of the imbalance between the production of reactive
oxygen species (ROS) and reactive nitrogen species (RNS), and intracellular antioxidant
defences, is invariably involved in the onset of neurological pathologies such as AD,
Parkinson’s disease, and amyotrophic lateral sclerosis [30,31]. The major species
responsible for oxidative stress is the overproduction of ROS and RNS, due to mitochondrial
dysfunction [32]. ROS which include superoxide anion radical and hydroxyl radicals are
involved in the damage of lipids, DNA, and protein modifications. Minor modifications of the
nucleic acid bases are repaired through base excision repair involving DNA glycosylase and
Apurinic/apyrimidinic (AP) endonuclease. These enzymes are located in the nuclei and
mitochondria. The progression of AD is associated with the diminished expression of these
DNA repair enzymes [33,34]. The accumulation of the oxidatively damaged nucleic acids
and proteins leads to the onset and progression of neurological pathologies characterizing
AD [35].

Aβ accumulation in AD induces oxidative stress through several mechanisms, including
stimulation of nitric oxide synthase (NOS) activity [36]. NO synthase mediated NO radical
formation through converting L-arginine to L-citrulline. NO caused brain lesion development
and further progression of brain pathology and dementia [37]. Peroxynitrite is a powerful
oxidant produced as a result of diffusion limited reaction of superoxide anion .O2

- with nitric
oxide. Peroxynitrite causes the nitration of tyrosine residues so that nitrotyrosine
immunoreactivity is increased in the neuronal cytoplasm of the cerebral cortex within regions
of neurodegeneration in AD brains [38]. Also, AD induces oxidative stress by stimulating the
hydrogen peroxide (H2O2) generation in isolated neocortex mitochondria, decreasing the
activities of catalase and glutathione peroxidase in mitochondria [39]. Hence, it is thought
that oxidative stress may be an underlying mechanism in AD, and agents that prevent
oxidative damage may be particularly efficacious in the treatment of AD [40].

Cell dysfunction and cell death in nuclear groups of neurons, responsible for maintenance of
specific transmitter systems, lead to deficits in acetylcholine, norepinephrine, and serotonin
[41]. AD is characterized by a dysfunction of central cholinergic systems. Acetylcholine (Ach)
is the only classical neurotransmitter that, after release into the synaptic cleft, is inactivated
by enzymatic hydrolysis. Acetylcholinesterase (AchE) was identified as the enzyme
responsible for termination of cholinergic transmission by cleavage of Ach to acetate and
choline. AchE is found in cholinergic synapses in the brain as well as in autonomic ganglia,
the neuromuscular junction, and the target tissues of the parasympathetic system [42,43].

Excitotoxicity is also considered to play an important role in the pathogenesis of AD. It is
triggered by excessive stimulation of glutamate receptors (e.g. N-methyl-D-aspartate NMDA)
due to the increased release or a decreased uptake of excitatory amino acids, mostly
glutamate [43]. Many investigations using cultured cortical neurons demonstrated that Aβ
induced cell damage by increasing glutamate release [44]. The Aβ and excessive
glutamatergic tone may act synergistically in a reinforcing manner to induce oxidative stress
[45].

Alteration in the precisely regulated calcium homeostasis is one of the known causes of
neuronal malfunction. Moreover, calcium dysregulation is considered to be capable of
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eliciting increased Aβ formation and tau phosphorylation in the brain [13].
Calcium/calmodulin-dependent protein kinase II phosphorylates tau at the site of its
interaction with microtubules (Green and Peers, 2001). The increase in the cytosolic calcium
concentration induces transient phosphorylation of APP leading to an increased production
of intracellular Aβ [46]. Amyloid-β oligomers have been shown to rapidly elevate intracellular
calcium levels in human neuroblastoma cells and increase general membrane permeability
and membrane conductance [47]. Amyloid-β triggers calcium release from endoplasmic
reticulum (ER) stores by ryanodine receptor [48]. Cytosolic calcium concentration can be
additionally increased by the formation of cation selective ion channels by Aβ [49].
Moreover, the mechanism by which Aβ disrupts intracellular calcium homeostasis is related
to its ability to form reactive oxygen species that may induce membrane lipid peroxidation
[50]. These events cause the alteration in membrane properties and affect the function of
membrane transporters and ion channels leading to an elevation of intracellular calcium
levels [51]. These observations strongly suggest the existence of a positive feedback loop
between Aβ generation and an elevated level of calcium ions in the cytosol [52]. Additionally,
the increase in intracellular calcium results in overload of Ca2+ in mitochondria, causing
mitochondrial dysfunction manifested by increased production of ROS, deficiencies in key
enzymes of energy metabolism and glucose utilization, most consistently α-ketoglutarate
dehydrogenase and pyruvate dehydrogenase with consequent reduction in glucose transport
activity for the cerebral vessels [53], release in cytochrome c, and eventually apoptosis that
observed in AD patients̉ brain [54].

In recent years, a number of studies have investigated the potential role of various metal
ions in the pathogenesis of AD [55] and there was an Egyptian study carried out at
Alexandria University Hospital in 1993 revealed a significant increase in serum aluminum
level in patients with AD. This study supports the hypothesis that aluminum may be
implicated in AD etiology and pathogenesis [56]. Also, neurofibrillary degeneration found in
rabbits following aluminum exposure supported the implication of Al in the formation of
neurofibrillary tangles in the brain [57] as Al could induce miss folding and self-aggregation
of highly phosphorylated cytoskeletal proteins such as neurofilaments or microtubule
associated proteins which are implicated in AD [58].

Aluminum is found associated with amyloid-beta in the brains of AD patients [59]. This is
because of the ability of Al (III) to interact with acidic groups of the peptides, and to bind
these peptides with one another [60). Also, Al causes the conformational change of Aβ
peptides into the beta-sheet structure in vivo and in vitro [61].

AD involves a progressive mental deterioration manifested by cognitive impairments. The
relationship between occupational Al exposure and the possible impairment of cognitive
performance was also assessed [62]. Al inhibits long-term potentiation, causes synaptic
structural abnormalities, thereby resulting in profound memory loss [63]. Some
epidemiological studies indicated that occupational Al exposure can produce behavior
impairments [64].

Aluminum is a potent cholinotoxin [65] as it could reduce cholinergic function [66]. It causes
apoptotic neuronal loss in vivo as well as in vitro [63]. The neuronal loss is considered as a
characteristic symptom of AD [67].

Oxidative stress induced neuronal damage has been shown to be one of the important
mechanisms indicating the association of Al with the etiology of AD [68]. Aluminum is a
nonredox active metal which is capable of increasing the cellular oxidative milieu by
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potentiating the pro oxidant properties of transition metals such as iron and copper [69]. An
aspect of the biochemistry of this non redox active metal is its prooxidant activity, which
might be explained by the formation of an Al (III)-superoxide radical anion complex [70]. It
has been shown that chronic aluminum exposure is involved in the impairment of
mitochondrial electron transport chain (ETC) and the increased production of ROS [71]. ROS
interact with all biological macromolecules, including lipids, proteins, nucleic acids, and
carbohydrates. The resulting stress increases neuronal death, which contributes to the
neuropathology associated with several neurodegenerative diseases [72]. Also, Al induced
depletion of glutathione (GSH) and reduction in the activity of glutathione peroxidase (GPx),
glutathione S-transferase (GST) and catalase (CAT) [73].

1.5 Diagnosis of Alzheimer's Disease

Even though there is a large literature demonstrating altered levels of a range of biomarkers
in patients with AD, attempts to identify a single biomarker specific to AD have failed [74].

Biomarkers currently under investigation for the early diagnosis of AD include: brain volume
or activity measurements derived from neuroimaging techniques, such as positron emission
tomography (PET) or magnetic resonance imaging (MRI) and chemical indices detected in
various body fluids [75]. Decreased Aβ1-42 and increased phospho-tau protein levels in the
cerebrospinal fluid (CSF), when measured together, exhibit sensitivity and specificity in the
range 80% -90%, and are currently the most accurate chemical neurodiagnostics of sporadic
AD [75]. Other candidate chemical biomarker of the disease currently and commercially
available is CSF and urinary F2 –isoprostanes [75].

The serum protein-based algorithin biomarkers can be combined with clinical information to
accurately classify AD patients [74]. These markers consistently distinguished AD cases
from controls in significant analysis of microarray, logistic regression and Wilcoxon analyses,
suggesting the existence of an inflammatory-related endophenotype of AD that may provide
targeted therapeutic opportunities for this subset of patients. The serum brain derived
neurotrophic factor (BDNF) levels are significantly different between AD rat model and
controls suggesting that serum BDNF are a useful marker for AD disease status [76].

AD7C-NTP (neural thread protein 41-kD) is a brain protein that is selectively elevated in AD
disease and is associated with the pathologic changes of AD, and over expression of AD7C-
NTP is associated with the cell death similar to that found in the AD brain [77]. Urinary
AD7C-NTP is validated as a sensitive biomarker for AD and has significant clinical
usefulness [78].

The ultra high-sensitivity nanoparticle-based bio-barcode assay was used to measure the
concentration of Aβ-derived diffusible ligands (ADDLs), a potential soluble pathogenic AD’s
disease marker in the CSF of AD patients [79]. This method can be used to measure the
concentration of the pathogenic ADDL in CSF at clinically relevant concentrations and
proved that the elevated levels of ADDLs correlate with the presence of AD disease. This
method points toward a potential reliable detection method for diagnosing AD faster, higher
throughput, and less expensive than current imaging techniques.

AD can be linked to characteristic alterations in serum autoantibody expression profiles, and
by using only 10 autoantibody diagnostic biomarkers, AD patients serum samples were
readily distinguished from non-demented control (NDC) sera with a sensitivity of 96% and a
specificity of 92.5% [80]. This approach proved to be useful for AD diagnosis throughout the
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full course of the disease, and may also be useful for early detection, perhaps including
patients with mild cognitive impairment (MCI) and pre-symptomatic disease [80].

Recent research has shown that when the exosomes, present in the cerebral spinal column,
contain high levels of tau and other proteins, that gives an indicator of advanced stages of
AD and may become revolutionary in diagnosing AD in its early onset.

1.6 Potential Therapeutics for Alzheimer's Disease

There is no cure or effective therapy for reducing a patient’s amyloid burden or preventing
amyloid deposition in AD [16]. However, there was some recent sort of treatments which
showed an appreciable improvement in AD patients.

Positron emission tomography (PET) scans have shown that patients with AD treated with
genetically engineered tissue expressing nerve growth factor protein (NGF), inserted directly
into their brains, and realized a decrease in the rate of cognitive decline and an increase in
the brain’s uptake of glucose, a sign of increased brain activity. Also, the evaluation of Mini-
Mental Status Examination (MMSE) suggested an improvement in the rate of cognitive
decline and amyloid toxicity due to this type of treatment [81]. Also, the treatment with
exosome-mediated (siRNA) delivery produced a knockdown of BACE1, a therapeutic target
in AD in wild-type mice [82]. Moreover, the protein produced by K+-Cl- co transporter 2
(KCC2) gene which is a member of the K+-Cl- co transporter gene family has been found to
prevent exitotoxicity and protect neurons from death in neurodegenerative disease such as
AD [83].

Another type of recent treatment for AD is called cysteine protease inhibitors CA074Me and
E64d which were selected to inhibit β-secretase activity in the secretory vesicles that
produced β-amyloid [84]. That treatment of APP mice model, expressing the wild type WT β-
secretase site, with these inhibitors resulted in marked improvement in memory deficit
accompanied by the reduction in amyloid plaque load, depletion in Aβ-40 and Aβ-42, and a
decrease in the C-terminal β-secretase fragment derived from APP. The notable efficacy of
these inhibitors provides support for CA074Me and E64d as potential therapeutic agents for
AD patients [84].

Both atorvastatin and semavastatin may be associated with a decreased risk for AD disease.
Statin action is related to the drug’s ability to activate α-secretase-cleaved soluble Alzheimer
amyloid precursor protein ectodomain (sAPP α). Statins also inhibit the isoprenoid pathway
thus modulating the activities of the Rho family of small GTPase-RhoA,B and C. Rho
proteins, in turn, exert many of their effects via Rho-associated protein kinases ROCKs.
They suggest that the Rho/ROCK1 protein phosphorylation pathway might be involved
statin-stimulated shedding on sAPP α [85].

Epidemiologic studies revealed that long-term use of a select of nonsteroidal anti-
inflammatory drugs (NSAID) such as dapsone, meclofenamic acid and enantiomers of
flurbiprofen reduced the risk for development of AD and lowered Aβ-42 levels to greatest
extent by targeting γ-secretase. These drugs are excellent candidates for clinical testing to
lower Aβ-42 levels in AD patients [86].

The effect of another type of anti-inflammatory agent called nattokinase (Natto) on growth
factors in the brain of AD rat model has been studied. A remarkable improvement in the
biochemical parameters of the brain reflected by a decreased transforming factor-β (TGF-β)
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level with a significant increase in brain derived neurotrophic factor (BDNF) and vascular
endothelial growth factor (VEGF) levels has been detected. Moreover, histological
examination of brain tissue sections of the treated rats showed improvement in the brain
morphological structure and disappearance of most of the amyloid plaques [87].

Adenosine receptor (AR) signaling has been found to modulate the blood brain barrier (BBB)
permeability in vivo and AR activation could facilitate the entry of intravenously administered
macromolecules including large dextrans and antibodies to β-amyloid [88]. Treatment with a
broad-spectrum AR agonist (Lexiscan) allowed the intravenously administered anti-β-
amyloid to enter the CNS and bind β-amyloid plaques in a transgenic mouse model of AD
disease. In vitro study, a selective AR activation resulted in neuronal changes including a
decreased transendothelial electrical resistance, increased actinomyosin stress fiber
formation, and alterations in tight junction molecules [88]. These findings aid in drug delivery
and treatment options for neurological diseases such as AD.

Researchers from the University of Sheffield used lasers to fabricate intricate scaffolds from
a commonly used polymer, polylactic acid (PLA). These synthetic biocompatible materials
degrade in the human body to form lactic acid that can easily be removed leaving the
regenerated tissue behind in the required size, shape and structure. Also, these materials
had the ability to effectively harness the growth of neuronal cells. Therefore, the fabrication
of these scaffolds is considered as a vital step in the process of tissue engineering but these
scaffolds need to be fine-tuned when used in the treatment of AD [89].

Hormone therapy also took part in the treatment of AD as it has been found that estradiol or
dehydroepiandrosterone (DHEA) administration in a rat model of AD produced marked
improvement in the histological feature of the brain with a complete disappearance of
amyloid plaques [90].

Natural therapy has been also participated in the treatment of AD. When a naturally derived
grape seed polyphenolic extract was administered in Tg2576 mice, expressing high
molecular weight (HMW) Aβ oligomers, this polyphenolic preparation significantly attenuated
AD - type cognitive deterioration coincidently with a reduced HMW soluble oligomeric Aβ in
the brain. Therefore, it has been concluded that grape seed-derived polyphenolics may be
useful agents to prevent or attenuate AD in humans [34]. Moreover, the extracts of both
blackcurrants and boysenberries containing anthocyanins and polyphenolics can protect
against AD by influencing the gene expression in learning and memory areas in the brain,
that in turn activates cell signaling pathways which help neuronal cells to communicate with
each other [91].

The effect of dietary omega-3 polyunsaturated fatty acid; docosahexaenoic acid (DHA) on
amyloid precursor protein (APP) processing and amyloid burden has been studied. DHA
enriched diets has been found to reduce Aβ-42 levels and markedly deplete total Aβ by 70%
when compared with low-DHA or control diets. [92]. Thus, it has been suggested that dietary
DHA could be protective against β-amyloid production, accumulation, and potential
downstream toxicity [92].

Treatment of AD rat model with a combination of coenzyme Q10, vitamin B complex and
lecithin resulted in marked regression in the neurological damage as indicated through
histopathological examination of the brain tissue of the treated rats [62]. Also, treatment of
AD rat model with a combination of  vitamin E, acetyl-L-carnitine (ALC) and α-lipoic acid (LA)
restored the biochemical markers represented by total homocysteine (tHcy), insulin, insulin-
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like growth factor-1 (IGF-1), interleukin 1β (IL-1β) and tumor necrosis factor- α (TNF- α) to
near normal levels as compared to those achieved by using the AD drug “donepezil”. These
findings provide evidence for the importance of dietary supplements in delaying the
progression of age-related neurodegenerative diseases such as AD [93].

2. CONCLUSION AND OUTLOOK

In conclusion, AD is a fast growing world-wide epidemic disease. Aβ protein plays a pivotal
role in disease onset and progression and the secondary consequences of Aβ generation
and deposition, that include tau hyperphosphorylation and neurofibrillary tangle formation,
oxidation, inflammation, and excitotoxicity, also, contribute to the disease process. Reducing
tau hyperphosphorylation, limiting oxidation and excitotoxicity, and controlling inflammation
might be beneficial disease-modifying strategies.
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