Comparative Study of the Effects of the Commonly-consumed Aqueous Extracts of *Hibiscus sabdariffa* (Zobo Drinks) on Hepatic and Renal Indices of Normal Wistar Albino Rats

Chukwu Charles Nnanna¹*, Akaninwor Joyce Oronne¹ and Ikewuchi Catherine Chidinma¹

¹Department of Biochemistry, Faculty of Sciences, University of Port Harcourt, P.O.Box 5323, Choba, Rivers State, Nigeria.

Authors’ contributions

This study was carried out in collaboration between all authors. Authors CCN and AJO designed the study. Authors CCN and ICC wrote the protocol. Authors AJO and ICC supervised the work. Author CCN carried out all laboratories work and performed the statistical analysis. Author CCN wrote the first draft of the manuscript and managed the literature searches. Author AJO edited the manuscript. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/IJBCRR/2016/26075

Editor(s):
(1) Yi-Ren Hong, College of Medicine, Kaohsiung Medical University, Taiwan.

Reviewers:
(1) Nwibo Daniel Don, The University of Tokyo, Japan.
(2) Ana Carolina Oliveira da Silva Gambôa, Federal Rural University of Pernambuco, Brazil.
(3) Nurkhasanah, M. Si. Apt, University of Ahmad Dahlan, Indonesia.
(4) Abba Pacôme Obouayebe, Jean Lorougnon Guidé University of Daloa, Côte d’Ivoire.
(5) Sangeetha a/p Arullappan, University of Tunku Abdul Rahman, Malaysia.

Complete Peer review History: http://www.sciencedomain.org/review-history/17472

ABSTRACT

Aim: Investigating and comparing the effect of administration of different preparations of the commonly-consumed *Hibiscus sabdariffa* (Zobo) drinks on hepatic and renal indices.

Study Design: Animal models (Wistar Albino Rats) with daily administration of the same concentration of different zobo drink samples.

Place and Duration of Study: University of Port Harcourt, Choba, Rivers State, Nigeria and its environs between November 2014 and February 2015.

Corresponding author: E-mail: chaixdon@yahoo.com;
Methodology: Thirty (30) Wistar albino rats were grouped into six (6) groups of five rats each. Group A served as the control and group B was administered an unblended zobo drink. Groups C – E were administered locally-produced zobo samples and group F was a National Agency for Food and Drug Administration and Control (NAFDAC)-branded zobo drink. A concentration of 200 mg/kg body weight of the samples was administered orally to the groups B – F for 21 days. Hepatic marker enzymes (ALT, AST and ALP), bilirubin (total and conjugated), albumin, total protein and renal indices were analyzed and compared.

Results: The results indicate that the activities of ALT, ALP, Albumin and Unconjugated bilirubin were significantly lower \((P < 0.05)\), while Total protein and Total bilirubin levels were significantly higher \((P < 0.05)\) than the control (Group A). AST and Conjugated bilirubin showed no significant difference \((P > 0.05)\) in all the groups. The levels of Urea, Creatinine, Sodium (in group B), Potassium (\(K^+\)), and Chloride (\(Cl^-\)) were significantly higher \((P < 0.05)\) than the control. The Sodium (\(Na^+\)) level was significantly lower \((P < 0.05)\) than the control in groups C, D and E.

Conclusion: The results of this study suggest that all the samples were not hepatotoxic. However, the aqueous extract of Zobo may have nephrotoxic and hepatotoxic effects if the concentration is increased over time.

Keywords: Hibiscus sabdariffa; Zobo; liver enzymes; renal indices; hepatotoxic; hepatoprotective; nephrotoxic.

1. INTRODUCTION

Hibiscus sabdariffa belongs to the order of Malvales and the family of Malvaceae. It is believed to originate from East Africa [1]. H. sabdariffa plants are cultivated and consumed as vegetable and tea, whereas other Hibiscus varieties are planted for the fibres they produce. It is called different names like Roselle and Sourel in English and it is locally called zobo and Isapa in Nigeria [2]. Various types of highly valued food and medicinal products are produced from parts of the Hibiscus sabdariffa including the seeds, leaves, fruits and roots. Among them, the fleshy red calyces are the most popular [3] as they are commonly used to prepare non-alcoholic drinks in form of beverage or juice.

The non-anthocyanin portions of the Hibiscus sabdariffa calyces also have hepatoprotective effects, as evidenced by a pigment free extract that is able to protect from acetaminophen induced hepatotoxicity [4]. A study in persons with metabolic syndrome noted that 31 days of 100 mg Roselle extract (19 mg Anthocyanin Sambubiosides) was able to reduce serum ALT and AST, suggesting Roselle attenuates hepatic damage [5].

In Nigeria, the dried calyces of this plant are processed into a refreshing non-alcoholic local beverage commonly called zobo, zoborodo or Isapa (pronounced Isakpa) [6].

Zobo beverage is made from different varieties of calyces of the flower Hibiscus sabdariffa by boiling and filtration [7,8]. Zobo drink, which is usually prepared with the calyces of Hibiscus sabdariffa is believed to be highly nutritious and has many medical potentials including reduction in blood pressure, anti-diabetic, reduction in weight, antihyperlipidemic, hepatoprotective, anti-cancer, as well as an antioxidant e.t.c. [9-13].

Following increased religious and health awareness against consumption of alcoholic beverages in Nigeria and the consequent decrease in the consumption of alcoholic beverages in certain areas, Zobo drink has great potential as a local alternative to imported red wines in particular and alcoholic beverages in general [14]. Moreover, production of this and similar local beverages has become the main source of income in many homes in the rural communities and more recently in the urban areas where these have grown to cottage business proportions following governmental interventions through the poverty alleviation schemes, thereby alleviating poverty among the people [15].

Zobo is mostly consumed by low and middle class people due to its relative low cost, because the Hibiscus sabdariffa calyces and the ingredients are cheap and easy to get. It has recently gained wider acceptance, being consumed by several millions of people from different socio-economic classes and background in the West Africa sub-region and in Nigeria particularly.

Within the University of Port Harcourt and Choba community, the rate of consumption of Zobo...
drink by students and staff alike is enormous. This is reflective of the perception by many, that, zobo drink is highly nutritious, medicinal and of course, cheaper (following the prevailing economic downturn in Nigeria) than other non-alcoholic beverages sold around and within the environment.

However, many of the local producers of the drinks prepare the drinks under poor hygienic conditions, using different preparation methods and variants of synthetic flavours. Some of these synthetic flavours have been suspected of being toxic or carcinogenic and many have been banned whenever possible [16]. Some also believe that the consumption of zobo drink supplemented with flavour increased its antioxidant potentials and has no severe effect on the liver and kidney and thus, supplementation of zobo drinks with flavour additive maybe nutritionally beneficial [17].

Therefore, this study will be of importance in evaluating the effect of zobo drinks on hepatic and renal using normal Wistar albino rats. It will seek to find out and/or add to existing literature, whether or not, consumption of zobo drinks supplemented with synthetic flavours is beneficial to the body.

2. MATERIALS AND METHODS

2.1 Chemicals and Reagents

All chemicals and reagents used were of analytical grade. Alanine Transaminase (ALT) and Aspartate Transaminase (AST), Bilirubin, Total Protein and Albumin Test Kits by Randox Laboratories Ltd, Crumlin, England, UK were used.

2.2 Plant Material

Dried calyces of Hibiscus sabdariffa were bought from Choba market, Port Harcourt on 11th November, 2014. They were identified and authenticated in the Herbarium of the Department of Plant Science and Biotechnology (PSB), University of Port Harcourt where voucher specimens with code number 2435 were deposited.

2.3 Samples and Preparations

The unblended zobo drink sample was prepared using the method described by [17]. The dry calyces of Hibiscus sabdariffa (HS) were carefully sorted to remove dirt and other unwanted materials. Sixty grams (60 g) of the dry HS calyces were washed with cold water and added to two litres of boiling distilled water. It was allowed to boil for 15 minutes and then cooled. After cooling, the mixture was sieved with muslin cloth and filtered with Whatman No. 1 filter paper. The clear filtrate was covered with aluminium foil and stored in the refrigerator at 4°C until use.

The ZOBO COLA was also used for comparison. This is a commercially sold branded 400 mL Zobo drink produced by Zobo Cola Company Ltd, Nigeria, certified by National Agency for Food and Drug Administration and Control (NAFDAC) and sold in shops within the community. The ingredients used to prepare the Zobo Cola include: Purified water, HS extracts, Aspartame, Sugar, Cola flavour, Ginger and Citric acid. Other drink samples were obtained from shops around the community.

2.4 Experimental Animals

Thirty (30) Wistar Albino rats weighing between 110 – 195 g were used for the study. The animals were obtained from the Animal House of the Department of Biochemistry, University of Port Harcourt, Choba, Rivers state. All the animals were housed in the animal house, University of Port Harcourt, Choba Campus – using plastic cages covered with wire gauze and given standard food pellets (Top Feeds' grower's mash) and water ad libitum. They were acclimatized for 2 weeks and marked for easy identification and monitoring, after their baseline weights were taken. All procedures and techniques in handling the animals were according to standard methods and complied with the guidelines of the National Institutes of Health of the United States [18].

2.5 Experimental Design and Administration of Samples

The acclimatized albino rats were sorted according to their weights into five groups of six rats each. Group A was fed the normal rat feed with water and served as the control. Groups B – F served as experimental groups and were administered 200 mg/kg body weight of the respective samples via oral intubation for a period of 21 days. Group B was administered the unblended zobo drink. Group F was administered the Zobo Cola, while groups C, D and E were administered with other drink samples obtained from shops around the community. All animals were allowed access to water and food for the 21 days.
2.6 Sacrificing of Animals and Collection of Blood Samples

All the animals from the groups were sacrificed at the end of the administration period. The animals were incapacitated with chloroform in a desiccator. Under this condition, the rats were dissected using dissecting tools and the blood was collected and put into lithium heparin and EDTA anticoagulant tubes (to prevent blood clotting) for biochemical analyses.

2.7 Determination of Biochemical Parameters

The plasma ALT and AST activities were determined by monitoring the concentration of pyruvate and oxaloacetate hydrazine respectively, formed with 2,4-dinitrophenylhydrazine according to [19] using Randox test kits. The plasma ALP activity was determined using the colorimetric end-point method according to Rec [20]. The plasma total and conjugated bilirubin concentration were determined using Randox Test Kits according to the Jendrassik and Grof [21] method. Total protein concentration was determined by the Bromocresol Green (BCG) Dye Binding Method by [23], using Randox Test Kits.

2.8 Determination of Renal Indices

The Urease-Berthelot method according to Fawcett and Scott [24] as provided by Randox diagnostics Ltd. UK was used. Creatinine was determined by the direct end method of [25]. Sodium concentration was determined using the method of Maruna [26] and Trinder [27]. Potassium and Chloride ions were determined using the Colorimetric method.

2.9 Statistical Analysis

All data obtained in this study were subjected to statistical analyses using One-way Analysis of Variance (ANOVA). Tukey’s Multiple Range Test was used to test for differences between the administration groups. All analyses were done using Statistical Package for Social Sciences (SPSS) version 20.0 (IBM Statistics, UK). All the values were reported as means ± standard error of mean (SEM) and the results were considered significant at P-values of less than 0.05 ($P < 0.05$) i.e. at 95% confidence level.

3. RESULTS AND DISCUSSION

Results of the comparative effect of different aqueous extracts of *Hibiscus sabdariffa* (Zobo drinks) on activities of liver marker enzymes (ALT, AST and ALP), Total protein (TP), Albumin (ALB), Total bilirubin, conjugated bilirubin and unconjugated bilirubin (TB, CB, UC respectively) are summarized in Table 1.

To ascertain the state of living cells, AST, ALT and ALP are basic biochemical markers that are usually measured. These cytosolic enzymes are usually more concentrated in some organs like the liver, heart and in other parts of the body. These enzymes usually leak out of damaged tissues into the plasma, leading to their high level in the plasma. Such elevation of the enzymes in the blood is therefore an indication of tissue damage and altered membrane permeability [28]. Therefore, the results suggest that all the samples were not hepatotoxic. This is in line with Tseng et al. [29], which reported a hepatoprotective effect of extracts of *Hibiscus sabdariffa*. It is worthy of note that group D showed higher levels of ALT and AST, though not significant. This is suggestive that if the concentration of the sample is increased over time, it may cause a physiological dysfunction or damage to the hepatocytes. The non-significant changes in the levels of ALT, AST and ALP suggest that the liver functions were not impaired in those groups. Total protein is a rough measure of all the proteins found in the fluid portion of the blood, specifically looking at the total albumin and globulin [30]. Total protein may be required to get an overview information about nutritional status like when someone has undergone a recent weight loss and also to provide information (alongside other tests) if there is any symptom that suggests a liver disorder. An increase in total protein is usually the result of tissue damage [31]. Therefore, the significant higher levels of total protein in groups B, E and F suggests that those drink samples may be hepatotoxic and also, the excretion of protein by the kidney may be impaired. Meanwhile, the albumin (a major component of total protein) level in groups C and D were significantly lower than – suggesting liver function was not impaired in those groups. The elevated levels of total bilirubin (in groups C, D, E and F) and unconjugated bilirubin (in groups D and F) is an indication that there may hemolytic anaemia, internal hemorrhage, reduced hepatocyte uptake, impaired conjugation of bilirubin, reduced hepatocyte secretion of bilirubin or obstruction of the bile ducts in those groups.
Table 1. Effect of 21 days administration of different zobo drinks on biochemical parameters of wistar albino rats

<table>
<thead>
<tr>
<th>Group</th>
<th>ALT (U/L)</th>
<th>AST (U/L)</th>
<th>ALP (U/L)</th>
<th>TP (g/L)</th>
<th>ALB (g/L)</th>
<th>TB (µmol/L)</th>
<th>CB (µmol/L)</th>
<th>UB* (µmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (CNTRL)</td>
<td>14.6±0.87<sup>a</sup></td>
<td>23.0±0.32<sup>a</sup></td>
<td>67.6±0.68<sup>a</sup></td>
<td>69.6±1.50<sup>a</sup></td>
<td>36.0±0.63<sup>a</sup></td>
<td>5.66±0.36<sup>a</sup></td>
<td>2.40±0.63<sup>a</sup></td>
<td>3.26±0.32<sup>a</sup></td>
</tr>
<tr>
<td>B (ZSTD)</td>
<td>8.0±0.63<sup>b</sup></td>
<td>17.8±0.58<sup>b</sup></td>
<td>56.0±1.48<sup>a</sup></td>
<td>81.0±1.00<sup>b</sup></td>
<td>37.2±0.37<sup>a</sup></td>
<td>6.74±0.05<sup>a</sup></td>
<td>2.24±0.07<sup>a</sup></td>
<td>4.50±0.10<sup>a</sup></td>
</tr>
<tr>
<td>C (ZAP1)</td>
<td>10.0±0.89<sup>b</sup></td>
<td>19.6±1.57<sup>a</sup></td>
<td>43.0±2.55<sup>a</sup></td>
<td>65.6±1.47<sup>a</sup></td>
<td>31.8±1.02<sup>b</sup></td>
<td>7.40±0.07<sup>a</sup></td>
<td>3.80±0.47<sup>a</sup></td>
<td>3.60±0.43<sup>a</sup></td>
</tr>
<tr>
<td>D (ZAP2)</td>
<td>18.6±2.27<sup>b</sup></td>
<td>25.2±0.66<sup>b</sup></td>
<td>58.6±2.16<sup>a</sup></td>
<td>73.6±2.06<sup>a</sup></td>
<td>32.0±1.41<sup>b</sup></td>
<td>9.00±0.40<sup>b</sup></td>
<td>2.40±0.03<sup>b</sup></td>
<td>5.60±0.14<sup>b</sup></td>
</tr>
<tr>
<td>E (ZCHO)</td>
<td>14.8±1.16<sup>a</sup></td>
<td>19.6±1.21<sup>b</sup></td>
<td>30.6±0.40<sup>a</sup></td>
<td>79.0±1.00<sup>b</sup></td>
<td>36.8±0.73<sup>a</sup></td>
<td>6.76±1.02<sup>b</sup></td>
<td>4.86±0.85<sup>a</sup></td>
<td>5.10±0.70<sup>a</sup></td>
</tr>
<tr>
<td>F (ZCOLA)</td>
<td>15.4±0.93<sup>a</sup></td>
<td>22.4±2.79<sup>a</sup></td>
<td>61.0±0.71<sup>b</sup></td>
<td>77.0±0.37<sup>a</sup></td>
<td>34.2±0.37<sup>a</sup></td>
<td>9.46±0.57<sup>a</sup></td>
<td>2.36±0.05<sup>a</sup></td>
<td>7.10±0.54<sup>a</sup></td>
</tr>
</tbody>
</table>

Values in the table are means ± Standard error of mean (SEM) and n = 5. At (P < 0.05), means with different superscripts in a column are significantly different.

ALT = Alanine transaminase; AST = Aspartate aminotransferase; ALP = Alkaline phosphatase; TP = Total protein; ALB = Albumin; TC = Total bilirubin; CB = Conjugated Bilirubin; UC = Unconjugated bilirubin. * = UB values were calculated. ZSTD = Unblended Zobo drink; ZAP1 = Zobo drink sold within Abuja Campus Park (UNIPORT); ZAP2 = Zobo drink sold outside Abuja Campus Park; ZCHO = Zobo drink sold in Choba; ZCOLA = Branded Zobo drink (Zobo Cola®)

Table 2. Effect of 21 days administration of different zobo drinks on renal indices of wistar albino rats

<table>
<thead>
<tr>
<th>Group</th>
<th>Urea (mmol/L)</th>
<th>Creatinine (mmol/L)</th>
<th>K<sup>+</sup> (mmol/L)</th>
<th>Na<sup>+</sup> (mmol/L)</th>
<th>HCO<sub>3</sub>⁻</th>
<th>Cl⁻</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (CNTRL)</td>
<td>6.04±0.70<sup>a</sup></td>
<td>330.00±0.71<sup>a</sup></td>
<td>4.22±0.23<sup>a</sup></td>
<td>60.0±0.71<sup>a</sup></td>
<td>25.00±1.48<sup>a</sup></td>
<td>73.60±7.58<sup>a</sup></td>
</tr>
<tr>
<td>B (ZSTD)</td>
<td>6.70±0.08<sup>b</sup></td>
<td>397.00±5.64<sup>b</sup></td>
<td>3.95±0.14<sup>b</sup></td>
<td>75.60±3.37<sup>b</sup></td>
<td>26.00±0.32<sup>b</sup></td>
<td>87.00±1.10<sup>b</sup></td>
</tr>
<tr>
<td>C (ZAP1)</td>
<td>6.30±0.17<sup>a</sup></td>
<td>336.60±11.42<sup>a</sup></td>
<td>4.45±0.09<sup>a</sup></td>
<td>10.00±0.32<sup>c</sup></td>
<td>28.00±0.71<sup>a</sup></td>
<td>87.20±1.20<sup>a</sup></td>
</tr>
<tr>
<td>D (ZAP2)</td>
<td>6.75±0.11<sup>b</sup></td>
<td>418.60±11.03<sup>b</sup></td>
<td>4.15±0.06<sup>b</sup></td>
<td>10.00±0.32<sup>c</sup></td>
<td>27.00±1.00<sup>a</sup></td>
<td>87.80±1.39<sup>a</sup></td>
</tr>
<tr>
<td>E (ZCHO)</td>
<td>7.65±0.13<sup>b</sup></td>
<td>434.60±5.45<sup>b</sup></td>
<td>4.10±0.11<sup>a</sup></td>
<td>56.00±10.07<sup>a</sup></td>
<td>27.80±0.20<sup>a</sup></td>
<td>92.60±2.73<sup>b</sup></td>
</tr>
<tr>
<td>F (ZCOLA)</td>
<td>4.80±0.04<sup>c</sup></td>
<td>382.60±2.60<sup>b</sup></td>
<td>4.80±0.03<sup>b</sup></td>
<td>10.20±0.20<sup>c</sup></td>
<td>24.40±0.24<sup>a</sup></td>
<td>91.20±0.58<sup>b</sup></td>
</tr>
</tbody>
</table>

Values in the table are means ± Standard error of mean (SEM) and n = 5. At (P < 0.05), means with different superscripts in a column are significantly different.

K⁺ = Potassium ion; Na⁺ = Sodium ion; HCO₃⁻ = Bicarbonate ion
Results of the Renal Function Test (Urea, Creatinine, Potassium, Sodium, Bicarbonate and Chloride) of groups A – F are summarized in Table 2.

The higher levels of renal indices in the groups (B, D, E and F) suggest that the zobo drinks may have nephrotoxic effects (kidney impairment) on the experimental animals. The higher levels of sodium, potassium and creatinine, and no significant difference in bicarbonate, are in line with [32], which obtained the same trend in those renal indices. The likely kidney impairment is in line with Ogundapo [17], which implied that nephrotoxic effects of zobo drinks supplemented with commercial flavour additives may have been due to the presence of sodium cyclamate present in the flavour, which causes kidney damage and other effects [33]. The high levels of sodium in group B, chloride in groups A – F and potassium in group F is in line the study carried out by [34] on the diuretic property of Hibiscus sabdariffa. The study observed that rats that consumed aqueous Hibiscus sabdariffa extract had elevated plasma sodium, chloride and potassium. Aqueous extract of Hibiscus sabdariffa had also been shown in another study to be rich in Na⁺ [35]. By implication, the consumption of Hibiscus sabdariffa by the rats may have caused an increase in the oral Na⁺ load which consequently increased plasma Na⁺. A toxic insult to the kidney therefore, could have profound effect on total body metabolism [36].

Despite the enormous nutritive, health and medical potentials of the aqueous extract of Hibiscus sabdariffa (Zobo drink), this study showed that the drink may have had nephrotoxic properties. Dose and time-dependent studies of the effects of different samples of zobo drink on biochemical and renal indices is strongly recommended. Also, histological analysis should be done on the vital organs of animals administered with Zobo drinks.

4. CONCLUSION

This study aimed at investigating and comparing the effects of 21 days administration of different preparations of Hibiscus Sabdariffa (Zobo) drink consumed around the University of Port Harcourt community on hepatic and renal indices using normal albino rats. All the samples of zobo drink were not hepatotoxic. The non-significant changes in the levels of ALT, AST and ALP suggest that the liver functions were not impaired in those groups. The higher levels of renal suggest that the zobo drinks had nephrotoxic effects (kidney impairment) on the experimental animals.

ETHICAL APPROVAL

All authors hereby declare that "Principles of laboratory animal care" (NIH publication No. 85-23, revised 1985) were followed, as well as specific national laws where applicable. All experiments have been examined and approved by the appropriate ethics committee.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

against oxidative stress in rat primary hepatocytes. Food and Chemical Toxicology. 1997;35(12):1159-64.

© 2016 Chukwu et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://sciencedomain.org/review-history/17472