Mango (*Mangifera indica L*) Seed Kernel: Proximate Properties and Effect on Normal and Monosodium Glutamate-Hepato-Compromised Wistar Rats

Anthony Cemaluk C. Egbuonu¹, Okechukwu C. Atasie², Christian C. Ezeala¹ and Gift E. Ejike¹

¹Department of Biochemistry, Michael Okpara University of Agriculture, Umudike, Nigeria. ²Department of Biochemistry, Abia State University, Uturu, Nigeria.

Authors’ contributions

This work was carried out in collaboration between all authors. Author ACCE designed the study, wrote the protocol and approved the first draft of the manuscript. Author CCE carried out the experiments under supervision and wrote the first draft of the manuscript. Authors GEE and OCA managed the analyses of the study. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/IJBCRR/2017/38639
Editor(s): (1) Muhammad Farhan Jahangir Chughtai, Assistant Professor NUR International University, Lahore, Pakistan.
Reviewers: (1) Maha Zaki Rizk, Egypt. (2) Luk Bahadur Chetry, Rajiv Gandhi University, India.
Complete Peer review History: http://www.sciencedomain.org/review-history/23178

ABSTRACT

Monosodium glutamate, MSG, a widely used flavour enhancer could induce hepatic injury in humans while mango (*Mangifera indica L*) seed kernel, MSK, a common fruit waste could be nutritive and therapeutic. Thus, this study investigated the proximate properties of MSK and the effect of MSK on normal and monosodium glutamate-hepato-compromised Wistar rats using standard protocols involving five groups (n=4) viz: control (distilled water, 2 ml/kg), MSG (8 g/kg), MSK ethanolic extract, MSKE (0.3 g/kg), MSG (8g/kg) + MSKE (0.2 g/kg) and MSG (8 g/kg) + MSKE (0.4 g/kg) respectively fed via gavage daily for 14 days. Proximate content of MSK revealed total carbohydrate (71.99%), moisture (10.53%), crude protein (5.68%), ash (4.31%), fat (4.29%), and crude fiber (3.20%). The determined serum bio-indicators of hepatic function (alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase activity and total bilirubin concentration) in the rats exposed to MSG alone which were significantly (p<0.05) higher than those exposed to MSK.
in the control were reduced (p<0.05) dose dependently following concomitant exposure of the rats to MSK and increasing concentration of MSKE. Multifocal necrosis with periportal infiltration of mononuclear inflammatory leucocytes in the liver histology of MSG-treated rats contrasted the normal hepatic histo-architecture in the control and MSKE-treated rats. The study highlighted the dietary potential of MSK and confirmed a definite MSG-induced adverse effect on the liver histology and serum functional indices of rats, probably ameliorated on concomitant exposure with MSKE. Further studies to exploit MSK in diets and drugs could reduce its waste status hence were warranted.

Keywords: Total bilirubin; alanine aminotransferase, alkaline phosphatase, aspartate aminotransferase.

1. INTRODUCTION

Monosodium glutamate (MSG) improves food flavour but with adverse effects including on the liver of animals [1-5]. The liver plays a major role in protein and amino acids metabolism among other metabolic, synthetic and regulatory processes [6]. Plant wastes could contribute to environmental pollution [7]. However, potentials exist to utilize plant wastes for new food sources and drugs development thereby reducing the possible adverse environmental impact [8-10].

Mango by-products, peels and seeds, contain high levels of various health-enhancing substances and exhibited cytoprotective effect on liver injury [11,12]. In particular, Mangifera indica L. seed kernel which, currently, is not utilized for commercial purposes but discarded as waste showed promising biochemical effects in recent studies [13-15]. These warranted the present study aimed at determining the proximate property of Mangifera indica L. seed kernel and the effect of the ethanolic extract on normal and monosodium glutamate-hepato-compromised Wistar rats. The liver is a major organ central to xenobiotic detoxification hence unique in detecting possible adverse effects of novel diets and drugs.

2. MATERIALS AND METHODS

2.1 Sample Procurement and Identification

A commercially available brand of MSG (99% purity) was used in this study. It was procured from Ubani market, a daily food condiments market in Umuahia, south east Nigeria. Chemicals and solvents used in this study were products of reputable companies. They were purchased from reputable chemical dealers and used without further purification. This study was conducted between June and August, 2016. Fresh mango fruits collected from a particular mango tree were purchased from Orie ugba, a fruit and foodstuff market in Umuahia, Abia state, Nigeria. The mango fruits were identified and authenticated as Mangifera indica L (German variety) by a taxonomist in the department of Plant Science and Biotechnology, Michael Okpara University of Agriculture Umudike, Nigeria.

2.2 Sample Preparation and Extraction

The mango fruits were thoroughly washed with tap water. The fleshy part of the fruits was removed to obtain the seed stones which were sun-dried for three days. The sun-dried seed stones were carefully cut with clean table knife to remove the stony seed coat and obtain the seed kernels. The kernels thus obtained were chopped with home choice knife into bits and sun-dried for one week (seven days). The dry mango seed kernels were pulverized using Arthur Thomas Laboratory Mill, Crypto Model, USA. The pulverized mango seed kernel was extracted with ethanol (98 %) as described earlier [16].

2.3 Animal Study

2.3.1 Animal procurement and exposure groups

Twenty adult male Wistar rats (weight range, 104-170 g) used in this study were procured from the animal house of the Faculty of Biological Sciences, University of Nigeria, Nsukka. The rats were acclimatized for 2 weeks and then randomized (based on weight) to five experimentation groups with sample size of four rats. Rats in the control group were sham-dosed with distilled water (without either the extract or MSG) while rats in the MSG group were fed intoxicating dose (8000 mg/kg body weight) of MSG according to Mariyamma et al. [17] and as in several recent studies [13-15,18-20]. Rats in the extract group were fed mango seed kernel extract at 300 mg/kg body weight while rats in
the MSG + low extract group were concomitantly fed the mango seed kernel extract (200 mg/kg body weight) and intoxicating dose of MSG (8000 mg/kg body weight) whereas rats in the MSG + high extract group were co-administered 400 mg/kg body weight of the mango seed kernel extract and intoxicating dose of MSG (8000 mg/kg body weight). The exposure was per oral and daily for 14 days.

2.3.2 Sacrifice, Blood Sample Collection and Preparation

After 2 weeks (14 days) exposure, the rats were sacrificed the next day after overnight fast by cardiac puncture technique and the blood sample of the respective rats was collected individually into clean polystyrene tubes. The respective blood sample thus collected was centrifuged at 3000 rpm for 10 minutes. The resultant serum was respectively collected into polystyrene tubes and stored in deep freezer for the determination of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP) activity as well as serum total bilirubin (TBIL) concentration.

2.3.3 Ethical Consideration

This study which is a continuation of our line of studies on the evaluation of biochemical effects of mango seed kernel extract on normal and monosodium glutamate-challenged experimental models considered and adhered to the standard ethical use of experimental animals. Throughout out the experimentation (acclimatization and exposure periods), all rats were housed at 25°C in stainless steel cages under normal daylight/dark cycle and humid tropical condition. The rats were allowed free access to rats’ feed (Vital feed, Jos Nigeria) and tap water, and generally received humane care in accordance with the guidelines of the National institute of Health, USA for ethical treatment of laboratory animals as approved (by consensus consent after the presentation of the study proposal) by the various (departmental and college) ethical committees of Michael Okpara University of Agriculture Umudike, Nigeria.

2.4 Determination of Proximate Content

Proximate content viz: moisture, ash, fibre, fat and protein was determined as described previously [21-23]. The total carbohydrate content of MSK was estimated as the Nitrogen free extract (NFE) by arithmetic difference using the relation: Total CHO % = 100 − (fibre + protein + Moisture + ash + fats).

2.5 Determination of Seric Chemistry Parameters

Determination of serum bilirubin was according to instruction provided in Randox™ assay kit based on the method of Jendrassik and Grof [24]. The method was based on the principle that bilirubin could react with diazotized sulphanilic acid in an alkaline medium to form a blue coloured complex which could be measured with a spectrophotometer and calculated to give the concentration of bilirubin in the serum sample.

The serum activity for AST and ALT was determined using a Randox™ commercial kits according to the method of Reitman and Frankel [25]. The method was based on the colorimetric estimation of oxaloacetate (for AST) or pyruvate (for ALT) produced through transamination of aspartate or alanine respectively on reacting with 2,4-dinitrophenyl hydrazine (DNPH). The intensity of the resultant brown-colored hydrazone was measured with a colorimeter after 5 minutes at 540 nm and the activity (AST or ALT) was read up from standard curve.

The serum ALP activity was determined using a Randox™ commercial assay kit according to the method of King and Armstrong [26]. This was based on the colorimetric estimation, at 520 nm, of red colored complex formed following the hydrolysis of phenyl phosphate by alkaline phosphatase to release hydroxybenzene (aside phenol and phosphate) which combines with 4-dinitrophenyl hydrazine (DNPH). The intensity of the resultant brown-colored hydrazone was measured with a colorimeter after 5 minutes at 540 nm and the activity (AST or ALT) was read up from standard curve.

2.6 Histopathological Examination

Collected sample (liver) was fixed in 10% phosphate buffered formalin for a minimum of 48 hours. The tissue was subsequently trimmed, dehydrated in 4 grades of alcohol (70%, 80%, 90% and absolute alcohol), cleared in 3 grades of xylene and embedded in molten wax. On solidifying, the blocks were sectioned, 5µm thick, with a rotary microtome, floated in water bath and incubated at 60°C for 30 minutes. The 5µm thick sectioned tissues were subsequently cleared in 3 grades of xylene and rehydrated in 3 grades of alcohol (90%, 80% and 70%). The sections were stained with Hematoxylin for 15
minutes. Blueing was achieved with ammonium chloride. Differentiation was done with 1% acid alcohol before counterstaining with Eosin. Permanent mounts were made on degreased glass slides using a mountant; DPX. Prepared slides were examined with a Motic™ compound light microscope using x4, x10 and x40 objective lenses. Photomicrographs were taken using a Motic™ 9.0 megapixels microscope camera at x100 and x400 magnifications.

2.7 Method of Statistical Analysis

Analysis of variance (ANOVA) and least significance difference (LSD) were carried out on the data at 95% confidence level using SPSS statistical software package, version 20. Results were expressed as mean ± standard deviation (SD).

3. RESULTS AND DISCUSSION

3.1 Results

As shown on Table 1, the proximate content of MSK in decreasing order revealed that total carbohydrate (71.99%) was highest followed by moisture (10.53%), crude protein (5.68%), fat (4.29%) and ash (4.31%) while crude fiber (3.20%) was the least.

The determined serum alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase activity (IU.l$^{-1}$), respectively in the rats exposed to MSG alone (129.55, 152.50, 238.67) which was significantly (p<0.05) higher than that in the control (74.48, 116.68, 34.85) and Extract-exposed group (34.18, 145.75, 137.25) reduced (p<0.05) dose dependently following concomitant exposure of the rats to 200 mg/kg (39.50, 151.00, 173.25) and 400 mg/kg (36.62, 149.71, 169.67) of MSKE (Table 2).

<table>
<thead>
<tr>
<th>Groups</th>
<th>ALT (IU/L)</th>
<th>AST (IU/L)</th>
<th>ALP (IU/L)</th>
<th>TBIL (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (Distilled water 2 ml/kg b.w)</td>
<td>74.48±5.13</td>
<td>116.68±1.31</td>
<td>34.85±0.92</td>
<td>0.33±0.03</td>
</tr>
<tr>
<td>MSG 8000 (mg/kg b.w)</td>
<td>129.55±9.83</td>
<td>152.50±0.87</td>
<td>34.08±0.03</td>
<td>1.76±0.03</td>
</tr>
<tr>
<td>Extract 300 (mg/kg b.w)</td>
<td>34.18±0.68</td>
<td>145.75±0.77</td>
<td>34.85±0.05</td>
<td>1.24±0.01</td>
</tr>
<tr>
<td>MSG 8000 (mg/kg b.w) + low Extract 200 (mg/kg b.w)</td>
<td>39.50±1.05</td>
<td>151.00±1.01</td>
<td>173.25±0.86</td>
<td>1.17±0.22</td>
</tr>
<tr>
<td>MSG 8000 (mg/kg b.w) + high Extract 400 (mg/kg b.w)</td>
<td>36.62±1.23</td>
<td>149.71±1.09</td>
<td>169.67±1.04</td>
<td>1.17±0.22</td>
</tr>
</tbody>
</table>

Table 2. Effect of pulverized mango (M. indica) seed kernel extract, MSKE, on the activity (IU/L) of alanine aminotransferase, ALT, aspartate aminotransferase, AST, and alkaline phosphatase, ALP, and concentration of total bilirubin of normal and monosodium glutamate-challenged rats’ serum

Value presented as mean ± SEM of sample size, n = 4 rats. + denotes higher by; − denotes lower by. Significant difference at P = .05

Similarly, the determined serum total albumin concentration (mg.dl$^{-1}$) in the rats exposed to MSG alone (1.76) which was significantly (p<0.05) higher than that in the control (0.33) and Extract-exposed group (0.85) reduced (p<0.05) dose dependently following concomitant exposure of the rats to 200 mg/kg (1.24) and 400 mg/kg (1.17) of MSKE (Table 2).

3.1.1 Histopathological observations

Sections from the MSG group showed a mild periportal infiltration of mononuclear inflammatory leucocytes (arrow) and multifocal areas of hepato-cellular necrosis with mononuclear leucocytic infiltration (Fig. 1).

Sections of the liver collected from the animals in the other groups including the control as compared to the MSG-exposed group showed normal hepatic histo-architecture viz: normal hepatic lobules with normal hepatocytes arranged in radiating cords around the central veins (CV) with the hepatocytes (arranged in cords) radiating towards the portal areas characteristic of normal hepatic artery, hepatic vein (HV) and bile duct (B) (Figs. 2, 3, 4, 5).
and the effect of MSK on normal and monosodium glutamate-hepato-compromised

Proximate content of MSK were: total carbohydrate (71.99%), moisture (10.53%),
crude protein (5.68%), ash (4.31%), fat (4.29%),
and crude fiber (3.20%) which suggest that MSK
could have dietary potential. In particular,
the total carbohydrate content of MSK compared
with the value range (70.12% - 77.90%) obtained
in previous studies [27-28] and far higher than
that (30.85%) in Terminalia catappa endocarp
[29]. This indicated that mango seed could serve
as a good alternative carbohydrate-energy
source. The crude fibre content compared with
that (5.72%) reported by Nzewi and Egbuonu
[30] and higher than that (2.40 and 2.02,
respectively) reported by Fowomola [27] and
Nzikou et al. [31] but far lower than that (36.33%)
reported for Terminalia catappa endocarp [29]. This indicated that MSK could not offer high satiety
(appetite satisfaction) or enhanced peristaltic
movement of food through the alimental canal
that could prevent constipation [32]. The
moisture content of mango seed kernel obtained
from this work was slightly higher when
compared to the value range (5.00% - 9.8%)
reported in previous studies [29-34] though lower
than that reported by Nzikou et al. [31]. The
observed moisture content was considered
moderately high to ensure ease of transportation
of nutrients and other necessary metabolic
reactions and low to ensure long shelf life for the
mango seed kernel flour [34].

3.2 Discussion

Monosodium glutamate, MSG, a widely used
flavour enhancer could induce hepatic injury in
humans while mango (Mangifera indica L) seed
kernel, MSK, a common fruit waste could be
nutritive and therapeutic. Thus, this study
investigated the proximate properties of MSK

![Fig. 1. Photomicrograph of liver sections of rats exposed to MSG showing damaged Portal area (P) as mild periportal infiltration of mononuclear inflammatory leucocytes (arrow) and multifocal areas of hepatocellular necrosis with mononuclear leucocytic infiltration. H&E: ×100](image1)

![Fig. 2. Photomicrograph of liver sections of rats exposed to MSKE alone showing normal central veins (CV) with normal hepatocytes arranged in radiating cords towards the portal areas characteristic of normal hepatic artery, hepatic vein (HV) and bile duct (B). H&E: ×100](image2)

![Fig. 3. Photomicrograph of liver sections of rats in the control group showing normal Central vein (CV); Portal area (P). H&E: ×100](image3)
but lower than that (9.05%) reported by Abulude et al. [32] and that (11.03%) reported by Anuforo et al. [29] implying moderate mineral supplying potential of MSK. The protein content of this study (5.68%) was within the range (5.20-8.28%) obtained from many varieties of mango in previous studies [34,35] and Terminalia catappa endocarp [29] suggesting that MSK could be a good dietary protein source. Also, MSK may be a good source of fat and oil as the fat and oil content obtained in this study (4.29%) was in the upper limit of the range (1.94% - 5.68%) obtained in previous studies [27,32,34,36] though lower compared to that (8.53) in Terminalia catappa endocarp [29].

The determined serum bio-indicators of hepatic function (alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase activity and total bilirubin concentration) in the rats exposed to MSG alone which were significantly (p<0.05) higher than those in the control were reduced (p<0.05) dose dependently following concomitant exposure of the rats to MSG and increasing concentration of MSKE. Bilirubin is the catabolic product of haem metabolism via the activities of the liver enzyme UDP-glucuronyltransferase [37] hence an indicator of liver function and integrity. Increased activity of ALP aside indicating liver damage could be indicating bone diseases [37,5]. Thus, the results indicated MSG-related heptotoxicity and possibly bone dysfunctions in the rats which perhaps were significantly and dose-dependently ameliorated by MSKE. Toxic assault on the liver associated with an increase in the studied indicators of liver function [38,39] and MSG-induced hepatic damage was reported earlier [5]. Multifocal necrosis with perportal infiltration of mononuclear inflammatory leucocytes in the liver histology of MSG-treated rats contrasted the normal hepatic histo-architecture in the control and MSKE-exposed groups. This seemingly confirmed the seric chemistry results that further suggested MSKE-related amelioration of MSG-induced hepatic assault and damage.

4. CONCLUSION

The study highlighted the dietary potential of MSK and confirmed a definite MSG-induced adverse effect on the liver histology and serum functional indices of rats, probably ameliorated on concomitant exposure with MSKE. Further studies to exploit MSK in diets and drugs could reduce its waste status hence were warranted.

ETHICAL APPROVAL

All authors hereby declare that "Principles of laboratory animal care" (NIH publication No. 85-23, revised 1985) were followed, as well as specific national laws where applicable. All experiments have been examined and approved by the appropriate ethics committee.

COMPETING INTERESTS

Authors have declared that no competing interests exist.
REFERENCES

© 2017 Egboonu et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sciencedomain.org/review-history/23178