Effect of Spacing on Grain Yield and Yield Attributes of Three Rice (Oryza sativa L.) Varieties Grown in Rain-fed Lowland Ecosystem in Ghana

Buri Mohammed Moro ${ }^{\text {* }}$, Issaka Roland Nuhu ${ }^{1}$ and Essien Ato Martin ${ }^{1}$
${ }^{1}$ CSIR-Soil Research Institute (SRI), Academy Post Office, Private Mail Bag, Kwadaso, Kumasi, Ashanti Region, Ghana.

Authors' contributions
This work was carried out in collaboration between all authors. Author BMM designed the study, wrote the protocol and wrote the first draft of the manuscript. Authors BMM and IRN managed the literature searches and analyses of the study while author EAM managed the experimental process. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/IJPSS/2016/21911
Editor(s):
(1) Eliana L. Tassi, Institute of Ecosystem Studies, National Research Council (ISEâ€ CNR), Italy.

Reviewers:
(1) Crepin b. Pene, Ivorian Academy of Sciences (ASCAD), Ivory Coast
(2) Tunira Bhadauria, Kanpur University, Uttar Pradesh, India.

Complete Peer review History: http://sciencedomain.org/review-history/12248

Original Research Article
Received $8^{\text {th }}$ September 2015
Accepted 10 ${ }^{\text {th }}$ October 2015
Published 10 ${ }^{\text {th }}$ November 2015

Abstract

Row transplanting is one of the good agronomic practices being promoted for lowland rice production in Ghana. The recently introduced 'Sawah' system promotes effective land preparation, good water management and row transplanting as well as the use of hand tools for weed control in lowland rice production. To determine the appropriate crop density, a trial was conducted to evaluate the effect of different spacing on three rice varieties (Sikamo, Jasmine 85, Marshall). The experimental design was a split plot with four replications. Spacing which served as main treatments included: $\mathrm{S}_{1}(20 \mathrm{~cm} \times 20 \mathrm{~cm}) ; \mathrm{S}_{2}(20 \mathrm{~cm} \times 25 \mathrm{~cm}) ; \mathrm{S}_{3}(25 \mathrm{~cm} \times 15 \mathrm{~cm}) ; \mathrm{S}_{4}(15 \mathrm{~cm} \times 15$ $\mathrm{cm})$ and $\mathrm{S}_{5}(30 \mathrm{~cm} \times 10 \mathrm{~cm})$. Rice was transplanted at 2 seedlings per stand. Results showed that spacing significantly affected tiller production, number of panicles per m^{2}, total biomass and paddy yield. Both the number of tillers per stand and number of panicles per m^{2} were significantly reduced under closer spacing than wider spacing in the order: $\mathrm{S}_{1}=\mathrm{S}_{2}>\mathrm{S}_{3}>\mathrm{S}_{4}=\mathrm{S}_{5}$. Highest grain yield was obtained at $20 \mathrm{~cm} \times 25 \mathrm{~cm}\left(11.4 \mathrm{t} \mathrm{ha}{ }^{-1}\right)$ and $20 \mathrm{~cm} \times 20 \mathrm{~cm}\left(10.9 \mathrm{t} \mathrm{ha}{ }^{-1}\right)$ for all the three varieties while lowest grains yield $\left(3.0^{\prime \prime} \mathrm{t} \mathrm{ha}^{-1}\right)$ was recorded at $30 \mathrm{~cm} \times 10 \mathrm{~cm}$ spacing. For

[^0]increased yields and easy adoption of simple hand tools for weed control, wider spacing of $25 \mathrm{~cm} x$ 20 cm and $20 \mathrm{~cm} \times 20 \mathrm{~cm}$ is recommended for rain-fed lowland rice production in Ghana.

Keywords: Ghana; grain yield; plant density; rain-fed lowland; row transplanting; yield attributes; sawah technology.

1. INTRODUCTION

Even though rice has been listed as one of the commodities for increased food security and import substitution for Ghana under the National Rice Development Strategy of Ministry of Food and Agriculture, the country still produces less than 40% of her domestic requirements [1]. The country, however, possesses a huge and vastly untapped potential for lowland rice production with an estimated irrigable land area of over seven hundred thousand ha, out of which less than 20,000 ha is currently under rice cultivation [1]. Rice is cultivated in virtually all the agroecological zones across the country.

Rice production in Ghana is categorized according to agro-ecology namely: Irrigated, rainfed lowland and rain-fed upland. The lowland rain-fed system covers 78% of the arable area; the irrigated system covers 6% while the upland system covers 16%. Maximum levels of production are expected to be obtained through increased cultivation of lowlands, particularly inland valleys using appropriate and affordable technologies. Even though rice production seems to be picking up over a couple of years now, there still remains a considerable gap between production and demand levels. Currently the national rice supply demand gap is bridged by importation. The annual per capita rice consumption in Ghana was 17.5 kg (1999-2001) rising to $22.6 \mathrm{~kg}(2002-2004)$ and it is expected to further rise to 63.0 kg by 2015 with demand increasing to 1, 680,000 tons per year by the same period [1].

The forest agro-ecological zone is one of the major rice growing areas and is more endowed with higher rainfall and guaranteed water availability throughout the growing season. The zone has the potential for achieving national selfsufficient in rice production. However, rice producers in Ghana are mostly peasant farmers who are poorly resourced. Production is constrained by such factors as lack of modern technology and/or machinery. Yields are still relatively low. Promoting the local rice industry will therefore enhance output and income of small holder farmers' thus promoting economic
growth in these communities. While the national average paddy yield is about $2.0 \mathrm{t} \mathrm{ha}^{-1}$, rice production in some parts of the country has recorded paddy yields of over $5.0 \mathrm{t} \mathrm{ha}{ }^{-1}$ with the introduction of the 'Sawah' system [2-5]. The "Sawah" system (bunded, puddled and levelled fields) which employs simple but effective water harvesting and improved land preparation methods leads to high use of nutrients. An evaluation of rice production where "Sawah" was introduced showed significant increases in rice grain yields and higher returns on investment for farmers [4]. There was over a fourfold increase in grain yields from less than $1.0 \mathrm{t} \mathrm{ha}^{-1}$ grain under the traditional system of rice cultivation to over $4.0 \mathrm{t} \mathrm{ha}^{-1}$ under the "Sawah" system at the end of the first year of its introduction.

Efforts to ensure increases in rice yield through proper water, crop and soil management have been going on for some time now in the country and results have been positive. However, lack of knowledge and/or necessary information on plant population density management practices is still a major constraint. Rice growth is known to be affected both qualitatively and quantitatively by plant population densities. However, many contradictions exist regarding the correct spacing of rice. Many authors [6-8] have indicated that closer spacing of $15 \mathrm{~cm} \times 10 \mathrm{~cm}, 15 \mathrm{~cm} \times 15 \mathrm{~cm}$ and $15 \mathrm{~cm} \times 20 \mathrm{~cm}$ were superior to wider spacing of $30 \mathrm{~cm} \times 10 \mathrm{~cm}, 20 \mathrm{~cm} \times 20 \mathrm{~cm}$ and 15 $\mathrm{cm} \times 25 \mathrm{~cm}$ by producing more effective tillers per unit area, higher plant height, higher leaf area index and total dry matter accumulation. However, other authors [9,10] on the other hand have reported that wider spacing ($25 \mathrm{~cm} \times 25 \mathrm{~cm}$, and $30 \mathrm{~cm} \times 30 \mathrm{~cm}$) produced significantly higher rice tillers, panicles per m^{2}, longer and weighty panicles, and higher grain yield than closer spacing ($15 \mathrm{~cm} \times 15 \mathrm{~cm}$). In Ghana, most rice farmers' practice random spacing and also do not transplant in rows. In the savannah agroecological zone, where water limitations are high, direct seeding either through broadcast or dibbling are the preferred methods, while within the forest agro-ecological zone where water is easily available, random transplanting and dibbling are the commonest method. With the introduction of "Sawah" system and other good
agricultural practices, row transplanting is being encouraged and promoted. For maximum yields, farmers need to plant at optimum densities. With the introduction of improved varieties and promotion of row transplanting which is being rapidly adopted by farmers coupled with the desire to promote/encourage mechanization (introduction of hand tools for weed control), there is therefore the major challenge of providing options on spacing (planting density options) so that farmers can plant at optimum plant densities if maximum yields are to be obtained.

2. MATERIALS AND METHODS

2.1 Location

The experiment was conducted in a rain-fed valley in Kumasi in the Forest agro-ecological zone of Ghana. The valley lies on latitudes 6040' $59^{\prime \prime}$ and longitude $1^{\circ} 37^{\prime} 0$ ". It is a long valley that runs several kilometres but measures less than 300 m across.

2.2 Experimental Design and Land Preparation

The design was a randomized complete block arranged in a split plot arrangement with four replications. The site was initially slashed and vegetative cover removed. The area was then ploughed using a power tiller. The ploughed site was then divided into four main blocks using bunds (about 100 cm high) to represent four replications. Each block was then divided into five (5) main plots by using bunds to represent the different spacing of $S_{1}(20 \mathrm{~cm} \times 20 \mathrm{~cm}), S_{2}$ $(20 \mathrm{~cm} \times 25 \mathrm{~cm}), \mathrm{S}_{3}(30 \mathrm{~cm} \times 15 \mathrm{~cm}), \mathrm{S}_{4}(25 \mathrm{~cm}$ $\times 15 \mathrm{~cm}$) and $S_{5}(15 \mathrm{~cm} \times 15 \mathrm{~cm})$. Each main plot was again sub-divided to three micro-plots measuring $2.0 \mathrm{~m} \times 2.0 \mathrm{~m}$ for the three rice varieties (Sikamo, Jasmine 85, Marshall). Each sub-plot was then manually puddled and levelled.

2.3 Transplanting

Three weeks old rice seedlings of the three varieties were manually transplanted to each micro-plot. Seedlings were transplanted at two per stand (hill) for all the different spacing adopted.

2.4 Mineral Fertilizer Application

Mineral fertilizer was applied at 90 kg N ha as Urea, $60 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} \mathrm{ha}^{-1}$ as Triple Super

Phosphates and $60 \mathrm{~kg} \mathrm{~K}_{2} \mathrm{O} \mathrm{ha}^{-1}$ as Muriate of Potash. All P and K and $50 \% \mathrm{~N}$ were applied immediately after transplanting. The remaining $50 \% \mathrm{~N}$ was applied at panicle initiation stage.

2.5 Weed Control

Weeds were manually controlled through occasional hand picking.

2.6 Data Collection

2.6.1 Growth characteristics

Number of tillers was counted after maximum tiller formation stage and mean number of tillers determined while plant height was measured at harvest.

2.6.2 Yield characteristics

At maturity, an area of $1.0 \mathrm{~m}^{2}$ excluding border rows was measured out in each sub-plot, number of panicles counted and harvested (grain and stover). Grain and stover yield were measured and yield per ha estimated. Panicles were also collected from non-border rows and mean individual weight per panicle determined. The weight of 1000 grains was measured using an electronic balance. Grain harvest index (GHI) was calculated as ratio of grain yield to total yield (grain + stover).

2.7 Statistical Analysis

The statistical software STATISTIX 8 was used to analyse the data and LSD at 5\% probability level was used as the mean separator.

3. RESULTS AND DISCUSSION

The forest agro-ecological zone has a bimodal rainfall pattern as shown in Fig. 1. Soils of the site have low to moderate levels of soil nutrients. Organic Carbon level was $21 \mathrm{~g} \mathrm{~kg}^{-1}$, total Nitrogen level was $2.3 \mathrm{~g} \mathrm{~kg}^{-1}$ while available Phosphorus was 5 mg kg . Exchangeable Potassium was $0.24 \mathrm{cmol}(+) \mathrm{kg}^{-1}$ with effective Cation Exchange Capacity (eCEC) being 11.5 $\mathrm{cmol}(+) \mathrm{kg}^{-1}$. Soil clay content was also very low $\left(80 \mathrm{~g} \mathrm{~kg}^{-1}\right)$. With such low contents of both clay and organic matter, water and nutrient retention capacities are most likely low. Under such conditions, not only is it essential to adopt water and nutrient conservation methods but also the
establishment of optimum plant populations if higher grain yields are to be achieved.

3.1 Effect of Spacing on Growth Factors

3.1.1 Tiller number and plant vigour

The number of tillers produced per stand under the different spacing adopted is presented in Fig. 2. Tiller number was significantly affected by spacing. Highest mean tiller number per hill (12.1) was recorded in the $20 \mathrm{~cm} \times 25 \mathrm{~cm}$ spacing for all the varieties which was significantly higher than all the spacing but similar to the $20 \mathrm{~cm} \times 20 \mathrm{~cm}$ spacing. The 20 cm $\times 20 \mathrm{~cm}$ spacing (10.6) and $25 \mathrm{~cm} \times 15 \mathrm{~cm}$ spacing (10.1) had similar number of tillers per hill but the $20 \mathrm{~cm} \times 20 \mathrm{~cm}$ spacing produced significantly more tillers than the $30 \mathrm{~cm} \times 10 \mathrm{~cm}$ spacing. All the different spacing produced significantly more tillers than the $15 \mathrm{~cm} \times 15 \mathrm{~cm}$ spacing. As the distance between plant stands decreases competition for space, light and soil nutrients sets in, resulting in lower tiller production. The number of tillers formed is a major factor that affects grain yield in rice hence grain yield decreases with decreasing number of tillers per hill. In addition, plants under wider spacing ($25 \mathrm{~cm} \times 20 \mathrm{~cm}$ and $20 \mathrm{~cm} \times 20 \mathrm{~cm}$) exhibited more vigorous growth than plants under closer spacing ($30 \mathrm{~cm} \times 10 \mathrm{~cm}$ and 15 cm x 15 cm). Growth attributes were significantly affected by spacing. Wider spacing resulted in the production of more tillers per stand than closer spacing. There was a significant increase in the number of tillers per stand with increased spacing. Larger plants with more vigorous growth were produced under wider spacing than closer spacing. Between varieties, however, spacing showed no significant effect as trend was similar.

3.1.2 Plant height

The effect of spacing on plant height is presented in Fig. 3. Mean plant height across the different spacing ranged from a lowest of $97.1 \mathrm{~cm}(15 \mathrm{x}$ $15 \mathrm{~cm})$ to the highest of $100.1 \mathrm{~cm}(20 \times 20 \mathrm{~cm})$. Between varieties, Sikamo recorded a fairly uniform plant height for all the spacings ranging from 98.5 cm to 102.6 cm . Plant height under Marshall ranged from $95.6 \mathrm{~cm}(30 \mathrm{~cm} \times 15 \mathrm{~cm})$ to $100.1 \mathrm{~cm}(20 \mathrm{~cm} \times 25 \mathrm{~cm})$ while Jasmine recorded plant height ranging from 93.1 cm (15 $\mathrm{cm} \times 15 \mathrm{~cm}$) to $102.3 \mathrm{~cm}(25 \mathrm{~cm} \times 15 \mathrm{~cm})$. Spacing seemed to have a little effect on plant height with no significant differences. While Ogbodo et al. [11] observed that plant height and
number of tillers were significantly higher when crops were transplanted at $30 \mathrm{~cm} \times 30 \mathrm{~cm}$ than at $10 \mathrm{~cm} \times 10 \mathrm{~cm}$ and $20 \mathrm{~cm} \times 20 \mathrm{~cm}$, Nwokwu [12], on the contrary, reported that plant spacing at $40 \mathrm{~cm} \times 40 \mathrm{~cm}$ only produced higher number of tillers, number of leaves, shorter days to 50% heading and 1000 grain weight whereas plant spacing at $30 \mathrm{~cm} \times 30 \mathrm{~cm}$ recorded longest panicles, more number of panicles and paddy yield but with no significant differences in plant height for the two different spacing. The authors attributed the observation to the presence of adequate plant nutrients in the soil for normal growth. In this study, plant height was less affected by spacing. As indicated earlier, adequate mineral fertilizer was applied to all treatments and therefore adequate nutrients were provided for optimum crop nutrition and growth. Hence such factors that affect plant height were probably not limiting.

3.2 Effect of Spacing on Yield Factors

3.2.1 Number of panicles per m^{2}

The effect of spacing on the number of panicles produced per m^{2} is presented in Table 1. The 20 $\mathrm{cm} \times 25 \mathrm{~cm}$ (605) and $20 \times 20 \mathrm{~cm}$ (563) spacing produced significantly higher panicles per m^{2} than all the spacing ($15 \mathrm{~cm} \times 15 \mathrm{~cm} ; 30 \mathrm{~cm} \times 10$ $\mathrm{cm} ; 20 \mathrm{~cm} \times 15 \mathrm{~cm})$. The lowest number of panicles per m^{2} was recorded under $30 \mathrm{~cm} \times 10$ cm spacing (318) which was similar to panicles per m^{2} under $15 \mathrm{~cm} \times 15 \mathrm{~cm}$ spacing. The three varieties, however, recorded similar number of panicles per m^{2}. For spacing by variety interaction, all the varieties interacted with 20 cm $\times 20 \mathrm{~cm}$ and $20 \mathrm{~cm} \times 25 \mathrm{~cm}$ spacing to give significantly higher number of panicles per m^{2} than the other spacing. Mirza et al. [13] observed that closer spacing reduced the number of effective tillers and increased tiller mortality, hence lower number of panicles. In this study, the more vigorous plants and greater tiller numbers produced under wider spacing would have a better photosynthetic ability with a wider feeding area, more accessibility to soil nutrients and increased availability of nutrient. While under closer spacing, plants were denied more access to solar radiation due to closeness of plant canopies, wider spacing provided a more conducive environment where plants are exposed to more solar radiation which promotes more photosynthetic production and better growth due to increased nutrient availability and uptake.

Fig. 1. Rainfall amounts and distribution during the experimental period

Fig. 2. Effect of spacing on number of tillers per hill of three lowland rice varieties in a rain-fed ecosystem in Ghana

3.2.2 Weight per panicle

The effect of spacing on individual panicle weight is presented in Table 2. Highest mean panicle weight was 5.33 g at a spacing of $20 \mathrm{~cm} \times 25 \mathrm{~cm}$
which was similar to mean panicle weight under $20 \mathrm{~cm} \times 20 \mathrm{~cm}$ spacing (5.19 g) which were significantly heavier than the panicle weight of the three lower spacing. Mean panicle weight was significantly affected by spacing. The effect
of spacing in individual panicle weight was in the order: S2 = S1 > S3 = S4 = S5. Between varieties there was no significant difference in panicle weight. All the three varieties interacted with $25 \mathrm{~cm} \times 20 \mathrm{~cm}$ and $20 \mathrm{~cm} \times 20 \mathrm{~cm}$ spacing to produce panicles which were significantly heavier than panicles produced under closer spacing of $30 \mathrm{~cm} \times 10 \mathrm{~cm}$ sand $15 \mathrm{~cm} \times 15 \mathrm{~cm}$. The general observation was that wider spacing produced heavier panicles than closer spacing.

3.2.3 Weight of 1000 grains

Table 3 shows the effect of spacing on the weight of 1000 grains. There were no significant differences between spacing and varieties. The interaction between spacing and variety gave similar results (no significant difference) between 1000 grain weight.

3.2.4 Grain vield

The effect of spacing on paddy yield is presented in Fig. 4. Higher grain yields were produced under wider spacing ($20 \mathrm{~cm} \times 25 \mathrm{~cm} ; 20 \mathrm{~cm} \times 20$ cm) than closer ($20 \mathrm{~cm} \times 15 \mathrm{~cm}$; $15 \mathrm{~cm} \times 15 \mathrm{~cm}$, $30 \mathrm{~cm} \times 10 \mathrm{~cm}$) spacing. The three varieties interacted with wider spacing ($25 \mathrm{~cm} \times 20 \mathrm{~cm}$ and $20 \mathrm{~cm} \times 20 \mathrm{~cm}$) to give similar paddy yields of over $10.0 \mathrm{t}^{\text {ha }}{ }^{-1}$ which was significantly higher than grain yields produced for any interactions at
closer spacing. Grain yield is the ultimate product that is of value and economic importance to the producer or consumer. The three varieties interacted with $25 \mathrm{~cm} \times 20 \mathrm{~cm}$ and $20 \mathrm{~cm} \times 20$ cm spacing to give significantly heavier and more panicles per m^{2}. Among others factors, these two combinations of heavier and more panicles per m^{2} under wider spacing ($25 \mathrm{~cm} \times 20 \mathrm{~cm}, 20 \mathrm{~cm} \times$ 20 cm) largely explains the significantly higher grain yields observed for these combinations. Grain yield showed a similar pattern to tiller production and number of panicles per m^{2}. Grain yield increased significantly with decreasing plant density (Fig. 4). According Ogbodo et al. [11] rice transplanted at $30 \mathrm{~cm} \times 30 \mathrm{~cm}$ spacing yielded 2.36 and $1.32 \mathrm{t} \mathrm{ha}^{-1}$ significantly higher grains than those transplanted at $10 \mathrm{~cm} \times 10 \mathrm{~cm}$ and 20 $\mathrm{cm} \times 20 \mathrm{~cm}$ respectively. In this study, a similar observation was made where wider spacing of $25 \mathrm{~cm} \times 20 \mathrm{~cm}$ and $20 \mathrm{~cm} \times 20 \mathrm{~cm}$, produced 8.06 and $7.56 \mathrm{t} \mathrm{ha}^{-1}$ more grain over the closer spacing of $30 \mathrm{~cm} \times 10 \mathrm{~cm}$ and $15 \mathrm{~cm} \times 15 \mathrm{~cm}$. There was less than a 1.0 t ha- ${ }^{1}$ yield difference between $15 \mathrm{~cm} \times 15 \mathrm{~cm}$ and $30 \mathrm{~cm} \times 10 \mathrm{~cm}$ spacing. This is in conformity with earlier observations of Bishnu et al. [10] and Mondal and Putch [14] who reported that lower seeding density resulted in the formation of more productive tillers, superior performance for all morpho-physiological and yield components, resulting in higher grain yields over higher

Fig. 3. Effect of spacing on plant height of three lowland rice varieties in a rain-fed ecosystem in Ghana

Table 1. Effect of spacing on number of panicles per m^{2} of three lowland rice varieties in a rainfed ecosystem in Ghana

Spacing	Rice variety			
	Sikamo	Jasmine 85	Marshall	Mean
$20 \mathrm{~cm} \times 20 \mathrm{~cm}$ (S1)	597	552	542	563
$20 \mathrm{~cm} \times 25 \mathrm{~cm}$ (S2)	595	592	630	605
$25 \mathrm{~cm} \times 15 \mathrm{~cm}$ (S3)	510	522	480	504
$15 \mathrm{~cm} \times 15 \mathrm{~cm}$ (S4)	467	375	427	423
$30 \mathrm{~cm} \times 10 \mathrm{~cm}$ (S5)	378	268	308	318
Mean	509	462	477	

Table 2. Effect of spacing on individual panicle weight (g) of three lowland varieties in a rain-fed ecosystem in Ghana

Spacing	Rice variety			
	Sikamo	Jasmine 85	Marshall	Mean
$20 \mathrm{~cm} \times 20 \mathrm{~cm}$ (S1)	4.93	5.25	5.41	5.19
$20 \mathrm{~cm} \times 25 \mathrm{~cm}$ (S2)	5.59	5.07	5.34	5.33
$25 \mathrm{~cm} \times 15 \mathrm{~cm}$ (S3)	4.52	3.93	4.52	4.32
$15 \mathrm{~cm} \times 15 \mathrm{~cm}$ (S4)	4.46	4.44	4.02	4.31
$30 \mathrm{~cm} \times 10 \mathrm{~cm}$ (S5)	4.06	3.99	3.94	4.00
Mean	4.71	4.54	4.65	

LSD ($p \leq 0.05$): Spacing $=0.592 ;$ Variety $=0.449 ;$ Spacing x Variety $=1.011$
Table 3. Effect of spacing on 1000 grain weight (g) of three improved lowland varieties in a rain-fed ecosystem in Ghana

Spacing	Rice variety			
	Sikamo	Jasmine 85	Marshall	Mean
$20 \mathrm{~cm} \times 20 \mathrm{~cm}(\mathrm{~S} 1)$	26.18	26.50	24.96	25.88
$20 \mathrm{~cm} \times 25 \mathrm{~cm}$ (S2)	26.92	26.08	25.00	26.17
$25 \mathrm{~cm} \times 15 \mathrm{~cm}$ (S3)	26.89	24.32	26.12	25.78
$15 \mathrm{~cm} \times 15 \mathrm{~cm}$ (S4)	25.83	27.51	24.72	26.02
$30 \mathrm{~cm} \times 10 \mathrm{~cm}($ S5 $)$	26.77	25.04	25.04	25.62
Mean	26.52	25.89	25.27	

LSD ($p \leq 0.05$): Spacing $=1.877$; Variety $=1.313 ;$ Spacing x Variety $=3.042$
seeding density. As outlined earlier, more vigorous plants and greater number of tillers were produced under wider spacing. This resulted in the production of more dry matter (more photosynthetic material) than the less vigorous plants under closer spacing, thus accounting for the significantly higher grain yields that were recorded under the wider spaced crops over the closer spaced crops.

3.2.5 Dry matter yield (straw + grain)

This is a measure of the total above ground dry matter produced (Fig. 5). Generally, the three varieties interacted with $20 \mathrm{~cm} \times 25 \mathrm{~cm}$ spacing to give the highest dry matter which was significantly higher than all the other spacing and varietal combinations. This was followed by dry
matter produced due to interaction between any of the varieties and $20 \mathrm{~cm} \times 20 \mathrm{~cm}$ spacing. Interaction between the varieties and the three closer spacing gave similar dry matter which was significantly lower than dry matter produced under the two wider spacing. Between varieties, Sikamo produced the highest biomass with Marshall and Jasmine 85 following in that order respectively. Mirza et al. [13] studying the effect of tiller dynamics and dry matter production in transplanted rice as affected by spacing and number of seedlings per hill, observed that wider spacing coupled with higher number of seedlings per hill accumulated maximum amount of dry matter, emphasizing that productivity of tillers as well as dry matter yield was lower with closer spacing and transplanting single seedlings per hill.

Fig. 4. Effect of spacing on grain yields of three lowland rice varieties in a rain-fed ecosystem in Ghana

Fig. 5. Effect of spacing on total dry matter production (\mathbf{t} / ha) of three lowland rice varieties in a rain-fed ecosystem in Ghana

3.3 Soil and Plant Analysis Development (SPAD) Values

The effect of spacing on SPAD (photosynthetic activity) values during the growth period is
presented in Fig. 6. During the first week after transplanting (WAT), SPAD values were relatively similar across the different spacing adopted ranging from $39(30 \times 10 \mathrm{~cm})$ to $41(20 \mathrm{~cm} \times 25$ $\mathrm{cm})$. Increase in SPAD values became rapid

Fig. 6. Effect of spacing on SPAD values of three lowland rice varieties in a rain-fed ecosystem In Ghana
for all spacing up to the third week after transplanting. After the third week after transplanting, wider spacing showed higher SPAD values for the two wider spacing ($25 \mathrm{~cm} \times$ 20 cm , and $20 \mathrm{~cm} \times 20 \mathrm{~cm}$) up to the fifth week and begun to fall sharply till the seventh week after transplanting. Spacing at $25 \mathrm{~cm} \times 20 \mathrm{~cm}$ recorded the highest SPAD values throughout the growth period, increasing from 41 during week 1 to 51 in week 3 and to a peak during week 5 . This trend was similar to the $20 \mathrm{~cm} \times 20$ cm spacing. However, 3 WAT SPAD values for closer spacing showed minimal increases in value in the order: $(25 \mathrm{~cm} \times 15 \mathrm{~cm})>(15 \mathrm{~cm} \times 15$ $\mathrm{cm})>(30 \mathrm{~cm} \times 10 \mathrm{~cm})$. By inference, the more vigorous plants and greater number of tillers recorded under wider spacing resulted in more leaves exposed to sunlight, higher and more effective mobilization of photosynthetic matter and better grain filling compared to closer spacing.

4. CONCLUSION

Transplanting at wider spacing produced significantly higher panicles per m^{2}, heavier individual panicle weights and higher yields than closer spacing. The spacing of $20 \mathrm{~cm} \times 20 \mathrm{~cm}$ and $20 \mathrm{~cm} \times 25 \mathrm{~cm}$ which corresponds to 20 and 25 stands per m^{2} produced significantly higher
grain yields and therefore were recommended for the rain-fed lowlands (inland valleys and flood plains). The three varieties, however, showed a similar response pattern to spacing.

ACKNOWLEDGEMENT

The authors are most grateful to all those who contributed in diverse ways towards this study particularly workers of the Soil Chemistry, Fertility and Plant Nutrition Division of the CSIRSoil Research Institute, Ghana.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. MoFA. National Rice Development Strategy of the Ministry of Food and Agriculture. Ghana; 2010.
2. Buri MM, Issaka RN, Wakatsuki T. Determining optimum rates of mineral fertilizers for economic rice grain yields under the "Sawah" system in Ghana. West African J. App. Ecol. 2008;12;19-31.
3. Buri MM, Issaka RN, Fujii H, Wakatsuki T. Comparison of soil nutrient status of some
rice growing environments in the major agro-ecological zones of Ghana. J. Food, Agric. Environ. 2009;8(1):384-388.
4. Buri MM, Issaka RN, Wakatsuki T, Kawano N . Intensifying and sustaining rice production in inland valley ecosystems in Ghana. Proc. of First International Conference on Rice for Food, Market and Development. (Eds: Onwualu AP, Obinne CPO, Jolaoso MA, Idu EE, Olugbemi BO, Onjewu SS, Sheriff-Musa. M). 2011;87-91. ISBN 978-978-50745-7-4
5. Issaka RN, Buri MM, Wakatsuki T. Effect of soil and water management practices on the growth and yield of rice in the forest agro-ecology of Ghana. J. Food, Agric. Environ. 2008;7(1):214-218.
6. Chandrakar BL, Khan RA. Optimum Spacing for Early, Medium and Late Duration Tall Indica Rice Cultivars. Oryza, 1981;18:108-110.
7. Jashim UM, Sultan A, Harun-ur-Rashid, Mahmudul HM, Asaduzzaman M. Effect of spacing on the yield and yield attributes of transplanted aman rice cultivars in medium Lowland Ecosystem of Bangladesh. J. of Agric. Res. 2011;49(4).
8. Faisul-ur-Rasool, Raihana H, Bhat MI. Agronomic evaluation of rice (Oryza sativa. L) for plant spacing and seedlings per hill under temperate conditions. African J. of Agric. Res. 2013;8(37):4650-4653.
9. Weewaroth K, Kadkoa S, Sindhusake C, Chantarated J. Effect of weeding density on gull midge infestation and rice yields in Norther Thailand. IRRN. 1979;4(5):19.
10. Bishnu BA, Biswarup M, Stephan H. Impact of rice nursery nutrient management, seeding density and seedling age on yield and yield attributes. America J. of Plant Sci. 2013;4:146-155.
11. Ogbodo EN, Ekpe II, Utobo EB, Ogah EO. Effect of plant spacing and nitrogen rates on the growth and yield of rice at Abakaliki, Ebonyi Sate, Southeast Nigeria. Research J. of Agric. and Bio. Sci. 2010;6(5):653.
12. Nwokwu GN. Performance of lowland rice (Oryza sativa) as affected by transplanting age and plant spacing in Abakaliki, Nigeria. Biology, Agriculture and Healthcare. 2015;5;(9):165-171.
13. Mirza H, Kamrunt N, Roy TS, Rahman ML, Hossain MZ, Ahmed JU. Tiller dynamics and dry matter production of transplanted rice as affected by plant spacing and number of seedlings per hill. Academic J. of Plant Sci. 2009;2(3):162-168.
14. Mondal MMA, Putch AB. Optimizing plant spacing for modern rice varieties. International J. of Agric. \& Bio. 2013;15: 175-178.
© 2016 Buri et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
[^1]
[^0]: *Corresponding author: E-mail: moro_buri@yahoo.com,

[^1]: Peer-review history:
 The peer review history for this paper can be accessed here: http://sciencedomain.org/review-history/12248

