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Abstract 
 

There exist several natural language processing systems that focus on checking the grammaticality 
(grammatical correctness or incorrectness) of natural language texts. Studies however showed that most 
existing systems do not assign specific scores to the grammaticality of the analysed text. Such scores 
would for instance prove very useful to second language learners and tutors, for judging the progress 
made in the learning process and assigning performance scores respectively. The current study was 
embarked upon to address this problem. A grammaticality grading model which comprised of 6 equations 
was developed using a vector space approach. The model was implemented in a natural language 
processing system. Correlation analysis showed that the grading (in %) performed using the developed 
model correlated at a coefficient of determination (R2) value of 0.9985 with the percentage of 
grammatical sentences in evaluated texts. The developed model is therefore deemed suitable for 
grammaticality grading in natural language texts. The developed model would readily find use in 
computer aided language learning and automated essay scoring. 
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1 Introduction 
 
A number of grammar-checkers systems exist that focus on checking the grammaticality (grammatical 
correctness or incorrectness) of natural language texts [1]. Studies however showed that most existing 
systems do not assign specific scores to the grammaticality of the analysed text [2]. Such scores would for 
instance prove very useful to second language learners and tutors, for judging the progress made in the 
learning process and assigning performance scores respectively. The current study was embarked upon to 
address this problem. English (Formal Standard English) was the language adopted in this study. 

 

2 Vectors and Vector Spaces  
 
Vectors and vector spaces are closely related terms as the latter is dependent on the former. Vector quantities 
are generally defined as quantities that have both magnitude and direction, unlike scalar quantities which 
have only magnitude but no direction [3]. A vector space on the other hand is a set of vectors along with 
operations of addition and multiplication such that the set is a commutative group under addition, having a 
multiplicative inverse, and including multiplication by scalars which is both associative and distributive 
[4,5,6]. 

 
2.1 Vectors 
 
Vectors and points are common data structure considered in many areas of Mathematics and Computer 
Science. They are applied extensively in data compression, image processing, computer vision, computer 
graphics, and numerical analysis. Two-dimensional vectors can be defined as directed arrows in the plane. 
The position of the arrow is not important. The length (magnitude) and direction of the arrow are the 
important features of the vector, and they determine the vector. They can be added, scaled and rotated [7]. 
Vectors having the same length and direction are said to be equivalent [3]. Two vector in the same direction 
are said to be parallel. The zero vector has a magnitude of zero and is denoted as 0 . Fig. 1(a) shows a vector 
a between two points (x1, y1) and (x2, y2). In Fig. 1(b), the vectors AB and DC are equivalent, because two-
dimensional vectors are distinguished only by length and direction. They are thus treated as equal i.e. AB = 
DC. 
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(b)   
 

Fig. 1. (a) Vector in the plane (b) Two equivalent and parallel vectors    
(Lindeman, 2008; Kambites, 2014) 

 
2.2 Vector space 
 
The concept of vector space has been the central point of discussion of a number of literatures [4,5,6,8,9,10, 
11,12]. A vector space V can summarily be defined as a set of vectors over the field F (such as real, 
complex, and natural numbers) which may be added together and multiplied (or scaled) by numbers referred 
to as scalars, such that for all x, y, z ∈ V, the following eight axioms are satisfied: 
 

i. Associativity of addition.  
x + (y + z) = (x + y) + z; 

ii.  Commutativity of addition.   x + y = y + x; 
iii.  Identity element of addition. There exists an element 0 ∈ V, called the zero vector, such that y + 0 = 

y for all y ∈ V; 
iv. Inverse element of addition. For every y ∈ V, there exists an element −y ∈ V, called the additive 

inverse of y, such that  
y + (−y) = 0; 

v. Compatibility of scalar multiplication with field multiplication. a(by) = (ab)y; 
vi. Identity element of scalar multiplication. 

1y = y, where 1 denotes the multiplicative identity in F; 
vii.  Distributivity of scalar multiplication with respect to vector addition. 

a(x + y) = ax + ay; and 
viii.  Distributivity of scalar multiplication with respect to field addition. (a + b)y = ay + by 
 
[5,6,8,9,10]. 
 
Depending on the literature, these expressions are sometimes compressed to give fewer axioms or expanded 
to give more axioms, expressing the exact same concepts.  

 
2.3 NLP applications of vectors and vector spaces 
 
The concept of vector space is considered in most linguistic and NLP literatures from the perspective of 
lexical and semantic distribution. Semantic vector space models of language make use of real-valued vectors 
to denote each word that are typically associated with a particular word. Words that typically occur together 
are assigned values that often depict their probability of occuring together in a sentence. They are used for a 
wide range of NLP operations including grammaticality evaluation and error detection. Detailed semantic 
and syntatic regularity have been successfully captured using vector space representations and vector 
arithmetic. The study of Pennington, Socher and Manning [13] came up with global vectors for word 
representation  (GloVe). The study focused on highlighting the properties that made the emergence of such 
captured regularities possible in word vectors. Schmid [14] however focused on efficient parsing of highly 
ambiguous context-free grammars using bit vectors. 
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The study of Stolcke [15] represented a formalism dubbed Vector Space Grammars (VSG) for deriving 
phrase structure categories that made use of structured samples of a context-free language. Using the 
connectionist approach, the entire training process made use of adaptation, competition and error back-
propagation, all occurring in a continuous vector space. It advocates the use of vectors instead of symbols for 
the purpose of linguistic category labeling.  
 

Vector Space Semantic Parsing (VSSP) presented in the work of Krishnamurthy and Mitchell [16] is a 
framework for learning compositional models of vector space semantics. It applies combinatory categoria 
grammar (CCG) to define the relationship between syntactic categories and semantic represenatations, taken 
as vectors and functions on vectors. Using CCG based semantic parser, texts are parsed into lambda calculus 
formulae that compute to equivalent vector space representations. 
 
In general, vector space models make use of vectors and operations on vectors to represent the  semantics of 
natural language expressions [17]. A number of other studies including Coecke, Grefenstette and Sadrzadeh 
[18], Socher, Pennington, Huang, Andrew and Manning [19], Socher, Huval, Manning and Ng [20], Turney 
[21] and Rapp [22] focused on similar concepts. The studies achieved significant performances that 
corresponded well with human judgment.  
 
Grammaticality is considered a vector concept within this literature, having both magnitude and direction. 
This is in contrast with scalar quantities that have only magnitude but no direction. The direction of 
grammaticality is either towards grammatical correctness, or away from grammatical correctness. 
Grammatical correctness is a state described as Grammatical Equilibrium (GE) within this study, and is 
ascribed a gradience value of zero (0). 
 

On a general note, grammars are usually designed to express the state of grammatical equilibrium. For 
constraint based grammars [23,24], each appropriate constraint within the grammar enforces the grammar 
towards being able express or determine sentences that are grammatically correct. 
 

Furthermore, although grammaticality [25] is generally used to express the state of grammatical correctness 
or otherwise of a sentence, it is sometimes used strictly as a measure of grammatical correctness, especially 
when used alongside ‘ungrammaticality’. From this perspective, grammaticality is used as a measure of 
grammatical correctness while ungrammaticality is used as a measure of grammatical incorrectness. 
 

3 Formulation of a Vector Space Model for Grammaticality Grading 
 
The formulation of a vector space model for grammaticality grading is presented in this paper. The approach 
employed in the current study is similar to that of Aregbesola et al. [26] but with enhancements made to the 
developed model to account for situations with no ungrammatical sentence in the evaluated texts. The 
current study further went ahead to implement and validate the formulated model. The formulation is in 
three phases: (i) The vector space V of grammaticality vectors is defined; (ii) The resultants of these vectors 
are shown to lie within the vector space; and (iii) A set of grammaticality gradience equations are derived 
using the formulated vector space for grammaticality grading. 
 

3.1 Definition of the vector space (V) of grammaticality 
 
Let x, y, z be weighted entities associated with grammaticality such as possible error categories. Such error 
categories include missing-word, extra-word, real-word spelling, verb-form, punctuation and agreement 
errors, which are uniquely identifiable within a sentence. Also let {x, y, z, ...} ∈ V. Like any other standard 
vector space, V is a set of vectors over the field F (which in this case is the set of real numbers R) which may 
be added together and multiplied (scaled) by numbers referred to as scalars, such that the eight axioms listed 
in Section 2.2 are satisfied. 
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As depicted in Figs. 2, 3 and 4, these grammaticality vectors forthwith dubbed Mosesean vectors are linear 
(one-dimensional) in nature. Therefore, addition operations on these vectors are by simple arithmetic 
summation. Furthermore, ungrammatical elements within input sentences are assigned negative values; 
while counter measures to correct such ungrammaticality are assigned positive values. Thus, the magnitude 
of grammaticality the Mosesean vectors introduce into the system at any point in time is totally dependent on 
the magnitude of existing ungrammaticality. Figs. 2, 3 and 4 illustrate these concepts. 

 

3.2 Resolving the resultants of Mosesean vectors 
 
The default value of zero (0) is assigned as gradience value to any sentence introduced into the system of 
Mosesean vectors. At this default value, the sentence is at equilibrium, and is completely grammatical. This 
equilibrium is toppled when ungrammatical elements are identified within the sentence. When a sentence is 
ungrammatical by a certain magnitude, the system attempts to find complementary grammaticality measures 
to pull the sentence back into equilibrium as depicted in Fig. 4. Grammaticality (+g) is generated in response 
to Ungrammaticality (-g). +g can only be as large as to cancel out -g, resulting in equilibrium. 
 

 
 

Fig. 2. Mosesean vectors on a real number line showing –ve Grammaticality ≡ Ungrammaticality 
 

 
 

Fig. 3. Resultants of Mosesean vectors not yet at equilibrium 
 

3.3 Computing grammaticality gradience using Mosesean vectors 
 
The default value of zero (0) is assigned as gradience value to any sentence introduced into the system                
of Mosesean vectors. If the sentence is grammatically correct, the gradience remains unchanged at zero           
and requires no further computation. However, if ungrammaticality (-g) is found within the sentence,            
the cumulative ungrammaticality (-Gsum) is the arithmetic sum of the individual ungrammaticality           
values. 
 

         -3        -2       -1        0        1         Grammaticality   
      -ve                                 Completely                                 +ve           
                                             Grammatical 

5g Ungrammaticality 

Resultant grammaticality 
(-5g +2g = -3g) 

                                            0                    Grammaticality    
      -ve                                       Completely                          +ve           
                                                  Grammatical 

Ungrammaticality 
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Thus: 
 

Let g0 be the default case (for a grammatical sentence) with no error, therefore g0 = 0. 
 

If the values assigned to ungrammaticality items in a sentence are -g1, -g2, -g3, … -gn,  
 
where n is the number of ungrammaticality items in the sentence, 
 
then 
 

-Gsum = g0 + (-g1) + (-g2) + (-g3) +…+ (-gn) 

                                                                          (1) 
 
If only the magnitudes are considered, ignoring the signs, then (3.1) becomes 
 

 
 

Therefore, the cumulative grammaticality (Gsum) required to bring the sentence into equilibrium is:   
 

                                                                             (2) 
 

 
 

Fig. 4. Resultant of Mosesean vectors at equilibrium 
 
Furthermore in the system, the grammaticality gradience (µG) of an ungrammatical sentence is computed by 
dividing the cumulative grammaticality (Gsum) by the total number of leaf nodes in the sentence parse tree. 
Since the number of leaf nodes in a sentence parse tree is always equal to the number of words in the 
sentence, it therefore follows that grammaticality gradience (µG) for a sentence of length m is:  
 

                                                                      (3) 
 
Assigning a value of magnitude one (1) to each ungrammaticality item in an input sentence, it follows that 
the cumulative grammaticality (Gsum) can at most be as large as the number (m) of words in the sentence. 

m 

n 

i = 0 
 |gi| ∑ 

µG   =  

         -3          -2        -1          0        1         2        3    Gram.    
      -ve                                        Completely                                +ve           
                                              Grammatical 

5g Ungrammaticality 

Resultant grammaticality 
(-5g +5g = 0) 

n 

i = 0 

 |gi| ∑ Gsum =   
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 |gi| ∑ Gsum = 
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Thus from equation (3.3):  
 

when n → 0: 
          m = m 
 

and   µG → 0 
 

when   n → ∞: 
m → ∞ 

 
and   µG → 1 
 

Hence, the grammaticality gradience µG is such that:   
 

                                                                         (4) 
 

As grammaticality evaluation extends beyond the evaluation of a single sentence to the evaluation of 
multiple sentences, the gradience for each sentence is computed in the same manner, applying (3.3) to each 
of them. The arithmetic mean of the gradience(s) of the different sentences is then computed to give the 
gradience of the entire text (all the sentences put together). 
 
Thus: 
 
If there are q sentences with gradience values µG1, µG2, µG3, … µGq, 
 
then  

 
µGsum = µG1 + µG2 + µG3 + …+ µGq 

                                                       (5)
  

and by extension, the mean grammaticality gradience µG for multiple sentences is:  
 

                                                     (6) 
           

Finally, since grammaticality gradience (µG) is a measure of deviation from grammaticality, the actual 
Grammaticality Score (GS) of a text would be evaluated by subtracting the gradience value from 1 and 
multiplying by 100 percent. 
 
Thus: 
 

                                                                       (7) 
3.4 Illustrations 
 
This section illustrates how the formulated vector space model for grammaticality grading woks. Three 
different cases are considered. The first case illustrates computation for a grammatical sentence. The second 
case illustrates computation for an ungrammatical sentence. The third case illustrates computation for 
multiple sentences comprising of grammatical and ungrammatical sentences.  
 

GS    =   (1 - µG) × 100%      

q 

q 

i = 1 
 µGi ∑ 

µG   =     

q 

i = 1 
 µGi ∑ µGsum =   
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3.4.1 Case 1: Grammatical sentence 
 
Consider the grammatical sentence “The fat pony sleeps in the barn”. To evaluate this sentence for 
grammaticality, HPSG is employed in a bottom-up fashion as shown in the parse tree in Fig. 5. As each 
lexical token in the sentence is parsed upward in the parse tree, it is replaced by its corresponding feature 
structure. For reasons of convenience, the parse tree in Fig. 5 only shows the POS components of the 
respective feature structures for each lexical entry. Since the sentence was successfully parsed all the way to 
the topmost root node (S in Fig. 5), and no error (n=0) was identified during the parse process. The sentence 
is therefore considered grammatical. The grammaticality gradience for this particular sentence is therefore 
computed as follows: 
 
Using equation (3.3) 
 
where n = 0  and m = 7  

 

µG =
0

7
 

µG = 0 
 
Therefore, the Grammaticality Score (GS) from equation 3.7 is given as 
 

GS = �1 − 0� × 100% 
GS = 100%                                 
 

which is the value expected for a grammatical sentence. 
 

 
 

Fig. 5. A phrase structure tree for “The fat pony sleeps in the barn” [27] 
 
3.4.2 Case 2: Ungrammatical sentence 
 
Consider the ungrammatical sentence “I loves Sandy”. The simplified feature structure for each lexical entry 
is shown in Fig. 6. Fig. 7 shows the agreements expected of the lexical entries. The numbers in square 
bracket (e.g. [1]) show what attributes should agree. Comparing the agreement between “I” and “loves”, a 
subject-verb error was observed (n = 1). “I” is first (1) person singular (sg) and therefore expects a first 

S 
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D NOM V PP 
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person singular verb, but rather it gets a third (3) person singular verb “likes” and vice versa. The ARG-ST 
feature for the verb “loves”, < loves, [ARG-ST < [NP [AGR 3s]], NP >] > shows that the third lexical entry 
“Sandy” is in agreement with the object expected by the verb.  
 
Thus, to compute the grammaticality gradience for this particular sentence: 

 
Using equation (3.2) 
 
where  n = 1 and  g = 1 
  Gsum =     1 
 
Using equation (3.3) 
 
where n = 1  and m = 3  
 

µG =
1

3
 

µG = 0.3333 
 

Therefore, the Grammaticality Score (GS) from equation 3.7 is given as 
 

GS = �1 − 0.3333� × 100% 
GS = 66.67%                          

 
which is within the range of values expected. It should be noted that the feature structures shown in Fig. 6 
and Fig. 7:  are highly simplified. 
 

(a)     
 

 

(b)     
 

 

(c)     
 

Fig. 6. (a) AVM for the word “I” (b) AVM for the word “lov es” (c) AVM for the word “Sandy” 
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Fig. 7. Parse tree for the sentence “I loves Sandy” highlighting the ungrammaticality weight 
 
3.4.3 Case 3: Multiple sentences  
 
Finally, consider a text that consists of both sentences in illustration 1 and 2. That is, “The fat pony sleeps in 
the barn. I loves Sandy”. To compute the overall grammaticality gradience for the text, the gradience for the 
individual sentences is computed as has already been done in illustrations 1 and 2. Equation (3.6) is then 
used to compute the overall grammaticality of the text as follows: 
 
Using equation (3.6) 
 
where q = 2 and µGi   =    {0, 0.3333} 
  

µG =
0 + 0.3333

2
 

 
µG = 0.1667 

 
Therefore, the Grammaticality Score (GS) from equation 3.7 is given as 
 

GS = �1 − 0.1667� × 100% 
 
 GS = 83.33%              

 
which is also within the range of values expected for a text consisting of both grammatical and 
ungrammatical sentences. 
 

4 Implementing the Model 
 
The model was implemented in a natural language processing system described in the work of  Aregbesola, 
Ganiyu, Olabiyisi and Omidiora [28]. The Grammaticality Evaluation Systems (GES) which is a computer-
based natural language processing system is used to classify natural language texts as either grammatical or 
ungrammatical. The GES was developed using the constraints-based approach of Handcrafted Grammar 
(HG).  
 
Sample texts of grammatical sentences used in the study were acquired from different sources including the 
British National Corpus, language experts and print media. Ungrammatical sentences were generated from 

 

I loves Sandy 

   V [SUBJ < >,  
    COMPS < >] 

[1]NP [nom] 
V [SUBJ <[1]>,  
     COMPS < >] 

[2]NP[acc] V [SUBJ <[1]>, {-1} 
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the grammatical texts via word substitution, insertion and deletion. The grammaticality evaluation system 
architecture was designed based on the HG formalism. The system architecture was implemented using 
Visual Studio .NET and OpenNLP statistical lexical parser. The performance of the implemented system 
was evaluated with sets of grammatical and ungrammatical texts containing 1780 sentences each. The 
performance metrics employed in the study include Precision, Recall, Accuracy, F1-Score, False Positive 
Rate and Execution Time. The relationship between Average Execution Time (AET) and Number of Words 
(NW) per sentence was equally investigated. 
 
The evaluation results in Table 1 showed that the system yielded Execution Time, Precision, Recall, 
Accuracy, F1-Score and False Positive Rate values of 0.0409 second, 0.9091, 0.9831, 0.9424, 0.9447 and 
0.0983, respectively. The investigation of the relationship between AET and NW revealed that the AET per 
sentence was directly proportional to the NW in the sentence. The study resulted in a system that evaluated 
the grammaticality of English language texts and also assigned specific percentage score values to the 
grammar of the evaluated text.  

 
Table 1. Overview of the systems’ performance [28] 

 
Measures Value 
Precision 0.9091 
Recall 0.9831 
Accuracy 0.9424 
F1 score 0.9447 
False positive rate 0.0983 
Execution time (seconds) 0.0409 
 

5 Validating the Model 
 
The validity of the developed model was tested using 1780 grammatical sentences and 1780 ungrammatical 
sentences, making a total of 3560 sentences. These sentences were collected from the British National 
Corpus [29,30], language experts, as well as from other online and print media sources. The BNC was 
chosen because it was designed to represent a wide cross-section of British English, both spoken and written, 
from the late twentieth century. The corpus of ungrammatical texts was generated from the corpus of 
grammatical texts by word substitution, insertion and deletion, an approach similar to that of Foster [31,32].  
 
Using the formulated Mosesean Vector Space Model in a natural language processing system, the average 
Grammaticality Scores (GS) for the considered grammatical and ungrammatical sentences were determined.  
Texts which consist of 0 - 50%, 50 - 75%, and 75 - 100% grammatical sentences were classified as Poor (P), 
Average (A) and Good (G), respectively. The ranges of GS characterising P, A and G sentences were then 
computed. The Coefficient of Determination (R2) describing the fitness of the formulated vector space model 
was also computed.  
 
The average GS for the considered grammatical and ungrammatical sentences were 99.64 and 73.34%, 
respectively. The GS characterising P, A and G sentences were in the ranges (0 ≤ GS < 87%), (87 ≤ GS ≤ 
94%) and (94 < GS ≤ 100%), respectively. This information is shown in Table 1. 
 
The regression chart of Fig. 8 shows the analysis on the data points extracted from the data ranges in Table 
1. The analysis yielded a Coefficient of Determination (R2) value of 0.9985. The relationship between the 
systems assigned score (y) and the percentage (x) of grammatical sentences in the texts is shown in the 
regression equation (4.1). 
 

 � = 0.2656x +  73.551                                                                                                                  (8) 
 
 



Table 2
 

Data ranges 
% Range of grammatical 
sentences in text 

% Range of scores 
assigned by the model

0 < x ≤50 73.34 < y < 87
50 < x ≤ 75 87 ≤ y 
75 < x < 100 95 ≤ y < 99.64
  

Fig. 8. Regression chart of system

 

6 Conclusion 
 
This research was embarked upon to meet the need for a grammaticality grading model that make it possible 
for systems to provide graded grammaticality evaluation feedback to users and learners of English language. 
In order to be able to provide the required graded feedback, there was the need for a grading mechanism. A 
vector space model for grammaticality grading was developed and sub
grammaticality grading mechanism for an existing grammar
 
The developed model for grammaticality grading which was successfully integrated into an existing 
grammar-checker system effectively assigned specific 
system. The average execution time (0.0409 seconds/sentence) of the system implementing the model was 
not noticeably altered. Hence, the developed grammar
overhead with respect execution time.
 
Regression analysis between the grammar
sentences in input texts showed a Coefficient of Determination (R
very close to the fitted regression line. Hence, the developed Mosesean Vector Space Model is a good fit for 
the concept of grammaticality grading which it modelled. The developed model is therefore suitable for 
grammaticality grading in natural language 
aided language learning and automated essay scoring.
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Table 2. Analysis of grammar scores 

Data points 
% Range of scores 
assigned by the model 

Grammatical sentences 
in text (%) 

Scores assigned by 
the model (%)

73.34 < y < 87 0 73.34 
≤ y ≤ 94 50 87 
≤ y < 99.64 75 94 

100 99.64 
 

 
 

Regression chart of system-assigned grammar scores (in %) against percentage grammatical 
sentences in texts 

This research was embarked upon to meet the need for a grammaticality grading model that make it possible 
ded grammaticality evaluation feedback to users and learners of English language. 

In order to be able to provide the required graded feedback, there was the need for a grading mechanism. A 
vector space model for grammaticality grading was developed and subsequently implemented as the 
grammaticality grading mechanism for an existing grammar-checker system.  

The developed model for grammaticality grading which was successfully integrated into an existing 
checker system effectively assigned specific percentage grammar scores to texts entered into the 

system. The average execution time (0.0409 seconds/sentence) of the system implementing the model was 
not noticeably altered. Hence, the developed grammar-grading model is very fast and does not constitut
overhead with respect execution time. 

Regression analysis between the grammar-score assigned by the system and the percentage of grammatical 
sentences in input texts showed a Coefficient of Determination (R2) value of 0.9985, meaning that the data is
very close to the fitted regression line. Hence, the developed Mosesean Vector Space Model is a good fit for 
the concept of grammaticality grading which it modelled. The developed model is therefore suitable for 
grammaticality grading in natural language texts. This developed model would readily find use in computer 
aided language learning and automated essay scoring. 
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Scores assigned by 
the model (%) 

assigned grammar scores (in %) against percentage grammatical 

This research was embarked upon to meet the need for a grammaticality grading model that make it possible 
ded grammaticality evaluation feedback to users and learners of English language. 

In order to be able to provide the required graded feedback, there was the need for a grading mechanism. A 
sequently implemented as the 

The developed model for grammaticality grading which was successfully integrated into an existing 
percentage grammar scores to texts entered into the 

system. The average execution time (0.0409 seconds/sentence) of the system implementing the model was 
grading model is very fast and does not constitute an 

score assigned by the system and the percentage of grammatical 
) value of 0.9985, meaning that the data is 

very close to the fitted regression line. Hence, the developed Mosesean Vector Space Model is a good fit for 
the concept of grammaticality grading which it modelled. The developed model is therefore suitable for 

texts. This developed model would readily find use in computer 
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Although English language was adopted in the current study, the developed Mosesean Vector Space Model 
is not language dependent. Future work should be targeted at applying the developed model in evaluating the 
grammaticality of texts in other natural languages.  
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