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Abstract 
 

This article proposes a synthesized classification of some Goldbach-like conjectures, including those 
which are “stronger” than the Binary Goldbach’s Conjecture (BGC) and launches a new generalization of 
BGC briefly called “the Vertical Binary Goldbach’s Conjecture” (VBGC), which is essentially a meta-
conjecture, as VBGC states an infinite number of conjectures stronger than BGC, which all apply on 
“iterative” primes with recursive prime indexes (i-primeths). VBGC was discovered by the author of this 
paper in 2007 and perfected (by computational verifications) until 2017 by using the arrays of matrices of 
Goldbach index-partitions, which are a useful tool in studying BGC by focusing on prime indexes. VBGC 
distinguishes as a very important conjecture of primes, with potential importance in the optimization of 
the BGC experimental verification (including other possible theoretical and practical applications in 
mathematics and physics) and a very special self-similar property of the primes set.  
 

 
Keywords: Primes with prime indexes; i-primeths; the Binary Goldbach Conjecture; Goldbach-like 

conjectures; the Vertical Binary Goldbach Conjecture.  
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2010 mathematics subject classification: 11N05 (Distribution of primes,  
URL: http://www.ams.org/msc/msc2010.html?t=11N05&btn=Current) 
 

1 Introduction 
 
This paper proposes the generalization of the binary (strong) Goldbach’s Conjectures (BGC) [1-7], briefly 
called “the Vertical Binary Goldbach’s Conjecture” (VBGC), which is essentially a meta-conjecture, as 
VBGC states an infinite number of conjectures stronger than BGC, which all apply on “iterative” primes 
with recursive prime indexes named “i-primeths” in this article, as derived from the concept of generalized 
“primeths”, a term first introduced in 1995 by N. J. A. Sloane and Robert G. Wilson in their “primeth 
recurrence” concept in their array of integers indexed as A007097 (formerly M0734) [8] in The Online 
Encyclopedia of Integer Sequences (Oeis.org); the term “primeth” was then used from 1999 by Neil 
Fernandez in his “The Exploring Primeness Project” [9]). The “i-primeth” concept is the generalization with 

iteration order 0i ≥  of the known “higher-order prime numbers” (alias “super-prime numbers”, “super-
prime numbers”, ”super-primes”, ” super-primes” or “prime-indexed primes[PIPs]”) as a subset of 

(simple or recursive) primes with (also) prime indexes, with 
i

xP  being the x-th i-primeth, with iteration 

order 0i ≥ , as noted in this paper and explained later on.  
 

VBGC was discovered in 2007 and perfected until 2017 by using the arrays ( pS  and ,i pS ) of Matrices 

(M) of Goldbach index-partitions (GIPs) (simple ,p nM  and recursive , ,i p nM , with iteration order 0i ≥
, also related to the concept of “i-primeths”), which are a useful tool in studying BGC/VBGC by focusing on 

prime indexes (as the function nP  that numbers the primes is bijective).  

 
There are a number of (relative recently discovered) GLCs stronger than BGC (and implicitly stronger than 

TGC), that can also be synthesized using ,p nM  concept:  these stronger GLCs (as VBGC also is) are 

tools that can inspire new strategies of finding a formal proof for BGC, as I shall try to argue in this 
paper. Additionally, there are some arguments that Twin Prime Conjecture (TPC) may be also (indirectly) 
related to BGC as part of a more extended and profound conjecture, so that any new clue for BGC formal 
proof may also help in TPC (formal) demonstration.  
 
The author of this article also brings in a S-M-synthesis of some Goldbach-like conjectures (GLC) 
(including those which are “stronger” than BGC) and a new class of GLCs “stronger” than BGC, from 
which VBGC (which is essentially a variant of BGC applied on a serial array of subsets of i-primeths with a 

general iteration order 0i ≥ ) distinguishes as a very important conjecture of primes (with potential 
importance in the optimization of the BGC experimental verification and other possible useful theoretical 
and practical applications in mathematics [including cryptography and fractals] and physics [including 

crystallography and M-Theory]), and a very special self-similar property of the primes subset of N
(noted/abbreviated as℘  or as explained later on in this paper). 

 
Primes (which are considered natural numbers [positive integers] >1 that each has no positive divisors 
other than 1 and itself (like 2, 3, 5, 7, 11 etc) by the latest modern conventional definition, as number 1 is a 
special case [10,11] which is considered neither prime nor composite, but the unit of all integers) are 

conjectured (by BGC) to have a sufficiently dense and (sufficiently) uniform distribution in N , so that:  
 

(1) Any natural even number 2 , 1n with n> can be splitted in at least one Goldbach 

partition/pair(GP)corresponding to at least one Goldbach index-partition (GIP) [12].  
 

*℘
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Or  

(2)  Any positive integer 1n >  can be expressed as the arithmentic average of at least one pair of 

primes. 
 
BGC is specifically reformulated by the author of this article in order to emphasize the importance of 
studying the Primes Distribution (PD) [13,14,15,16]  defined by a global and local density and uniformity 

with multiple interesting fractal patterns [17]: BGC is in fact an auto-recursive fractal property of PD in N  
alias the Goldbach Distribution of Primes (GDP) (as the author will try to argue later on in this article), but 
also a property of ℘, a property which is indirectly expressed as BGC, using the subset of even naturals).  
 

2 The Array pS  of the Simple Matrix of Goldbach Index-Partitions 

( ),p nM   
 
Definition of *℘  and ℘ . We may define the prime subset of N  as *℘ =  

( ) ( ) ( ){ }1 2 32 , 3 , 5 ,..., ,..., ,...x yP P P P P P∞= = = , with , * 0x y N and x y∈ < < , with 

( )x yP P  being the x-th (y-th) primes of *℘  and P∞  marking the already proved fact that *℘  has an 

infinite number of (natural) elements (Euclid's 2nd theorem [18]). The numbering function of primes ( )nP  

is a bijection that interconnects *℘  with *N  so that each element of *℘  corresponds to only (just) one 

element of *N  and vice versa: ( )11 2P↔ = , ( )22 3P↔ = , ..., xx P↔  (the x-th prime), yy P↔  

(the y-th prime), …, P∞∞ ↔ . Originally, Goldbach considered that number 1 was the first prime: 

although still debated until present, today the mainstream considers that number 1 is neither prime nor 
composite, but the unity of all the other integers. However, in respect to the first "ternary" formulation of GC 
(TGC) (which was re-formulated by Euler as the BGC and also demonstrated by the same Euler to be 

stronger than TGC, as TGC is a consequence of BGC), the author of this article also defines 0 1P =  (the 

unity of all integers, implicitly the unity of all primes) and ℘=
( ) ( ) ( ) ( ){ }0 1 2 31 , 2 , 3 , 5 ,..., ,..., ,...x yP P P P P P P∞= = = = , with , 0x y N and x y∈ ≤ < , although 

only *℘ = ( ){ }0 1P =℘−  shall be used in this paper (as it is used in the mainstream of modern 

mathematics). 
 

The 1st formulation of BGC. For any even integer 2n > , it will always exist at least one pair of (other 

two) integers , *x y N with x y∈ ≤  so that x yP P n+ = , with ( )x yP P  being the x-th (y-th) primes of 

*℘ . Important observation: The author considers that analyzing those “homogeneous” triplets of three  

naturals ( ), ,n x y  (no matter if primes or composites) is more convenient and has more “analytical” 

potential than analyzing (relatively) “inhomogeneous” triplets of type ( ), ,x yn P P : that’s why the author 

proposes Goldbach index partitions (GIPs) as an alternative to the standard Goldbach partitions (GPs) 

proposed by Oliveira e Silva. The existence of (at least) a triplet ( ), ,n x y  for each even integer 2n >  

(as BGC claims) may suggest that BGC is profoundly connected to the generic primality (of any xP  and 

yP ) and, more specifically, argues that GC is in fact a property of PD in N  (and a property of *℘  as 
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composed of indexed/numbered elements). The most important property of Primes and PD and is that 

 or ( )ln ,xP x x forany progressivelylargex≅ ⋅  

(which is the alternative [linearithmic] expression of the Prime Number Theorem [19], as if *℘  is a result 

of an apparently random quantized linearithmization of { }* 1N −  so that ( )lnnP n n→ ⋅ . In 

conclusion: For any even integer 2n > , at least one GIP exists (BGC – 1st condensed formulation). 

 
The 2nd formulation of BGC using the Matrix of Goldbach index-partitions (M-GIP or M).  
 

[1] Let us consider an infinite string of matrices { }1 2 3, , ,..., ,...nS M M M M M∞= , with each generic 

nM  being composed of lines made by GIPs ( ),x y , such as: 

 

 

 

( j  is the index of any chosen line of nM , j 1≥ and j nm≤ ) 

( nm  is the total maximum number of j-indexed lines of nM ) 

(xn,i,yn,i *N∈  , xn,i < xn,i+1 for 2nm ≥ , [ ] 1, ni m∀ ∈ ) 

 

[2] Let us also consider the function that counts the lines of any nM , such as: ( ) nl n m= . This function 

(that numbers the lines of a GM) is classically named as ( ) ( ) nr n l n m= =  (“r” stands for the number 

of “rows”) . 
 

[3] An empty/null matrix  ( )M ∅  is defined as a matrix with zero rows and/or columns. 

 

Using S , M , M∅  and ( )r n  as previously defined, BGC has two formulations sub-variants: 

 

1. nM M∅≠  (OR S  doesn’t contain any M∅ ) for any even integer 2n >  or shortly: 

2 neven integer n M M∅∀ > ⇔ ≠  (the 2nd  formulation of BGC – 1st sub-variant). 

2. For any even integer 2n > , ( ) 0r n >  or shortly: 2 ( ) 0even integer n r n∀ > ⇔ >  (the 

2nd  formulation of BGC – 2nd sub-variant). 

( ) ( )ln / ln ,x xP x x P x x for x→ ⋅ ⇔ → →∞

[ ]
, ,

,1 ,1

, ,

, ,

, with ,   j 1,n n j n j

n n

n n

x y nn j n j

n m n m

x y

x yM P P n m

x y

 
 
 
 = + = ∀ ∈ 
 
 
 
 

M M

M M
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The 3rd formulation of BGC using the generalization of S ( )pS  and the generalization of M

( ),p nM  for GIPs matrix containing more than 2 columns (as based on GIPs with more than 2 

elements).  
 
[1] Let us consider an infinite set OF infinite strings OF matrix:  
 

a) { }2 2,1 2,2 2,3 2 2, ,, , ,..., ,...nS M M M M M ∞=  (the generic 2,nM  of 2S  has 2 columns based 

on [binary] GIPs with 2 elements); 

b) { }3 3,1 3,2 3,3 3,3,, , ,..., ,...nS M M M M M ∞=  (the generic 3,nM  of 3S  has 3 columns based on 

[ternary] GIPs with 3 elements); 
c) …; 

d) { },1 ,2 ,3 , ,, , ,..., ,...p p n pp p pS M M M M M ∞=  (the generic ,p nM  of pS  has p columns 

based on [p-nary] GIPs with p elements and natural p>3);  
e) …,  

f) { },1 ,2 ,3 , ,, , ,..., ,...nS M M M M M∞ ∞ ∞∞ ∞ ∞ ∞=  (the generic ,M n∞  of S∞  has potentially 

infinite ( )∞  number of columns based on nary∞−  GIPs with a potentially infinite ( )∞  

number of elements) 

g) With each generic ,p nM  being composed of ,p nm  lines and p columns made by p-nary GIPs 

with p elements, such as: 
 

 ( j  is the index of any chosen line of ,p nM , 1j ≥  and ,p nj m≤   

and ,p nm  is the total maximum number of j-indexed lines of ,p nM ) 

( k  is the index of any chosen column of ,p nM , k 1≥  and k p≤   

and p  is the total number of k -indexed columns of ,p nM ) 

( , , , 1n j n jx x +≤  for , 2p nm ≥ , [ ], j 1,  k 1,p nm and p ∀ ∈ ∀ ∈  ) 

 

[2] Let us also consider the function that counts the lines of any ,p nM , such as: 

. 

 

[ ]

,1

, ,,

, ,,

,,

, ,,,

, ,,

,

... ...

... ... , with ... ... ,  

... ...

 j 1,  1, ,

n j n p jn j k

p n p np n

n pn n k

n j n p jn k jp n x x x

n m n p mn k m

p n

x x x

x x xM P P P n

x x x

m and k p

++++

++

 
 
 
 

= + + + + = 
 
 
 
 

 ∀ ∈ ∀ ∈ 

M M M M M

M M M M M

, *n k jx N+ ∈

,( , ) ( , ) p nr p n l p n m= =
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Using pS , ,p nM , M∅  and ( , )r p n  as previously defined, BGC has two formulations sub-variants: 

 

1. 2,nM M∅≠  (OR 2S  doesn’t contain any M∅ ) for any even integer 2n >  or shortly: 

2,2 neveninteger n M M∅∀ > ⇔ ≠  (the 3rd  formulation of BGC – 1st sub-variant). 

2. For any even integer 2n > , (2, ) 0r n >  or shortly: 2 (2, ) 0even integer n r n∀ > ⇔ >   

(the 3rd  formulation of BGC –2nd sub-variant). 
 
 

3 A Synthesis and A/B Classification of the Main Known Goldbach-like 
Conjectures (GLCs) Using the ,p nM  Concept 

 
3.1 The Goldbach-like conjectures (GLCs) category/class 

 
GLCs definition. A GLC may be defined as any additional special (observed/conjectured) property of pS  

and its elements ,p nM  other that GC (with 2n > ), with possibly other inferior limits 2a ≥ , with  

2n a> ≥ ). 
 

GLCs classification. GLCs may be classified in two major classes using a double criterion such as: 
 

1. Type A GLCs (A-GLCs) are those GLCs that claim: [1] Not only that all ,p nM M∅≠   for a 

chosen p>1 and for any / any odd / any even integer 2n a> ≥  (with a  being any finite natural 
established by that A-GLC and n a> ) BUT ALSO [2] any other non-trivial(nt) accessory 

property/properties of all ( ),p nM M∅≠  of pS . A specific A-GLC is considered authentic if the 

other non-trivial accessory property/properties of all ( ),p nM M∅≠  (claimed by that A-GLC) 

isn’t/aren’t a consequence of the 1st claim (of the same A-GLC). Authentic (at least conjectured as 
such) A-GLCs are (have the potential to be) “stronger” than GC as they claim “more” than GC 
does. 

 

2. Type B GLCs (B-GLCs) are those GLCs that claim: no matter if all ,p nM M∅≠  or just some 

,p nM M∅≠  for a chosen p>1 and for some / some odd / some even integer 2n a> ≥  (with a   

being any finite natural established by that B-GLC and n a> ), all those ,p nM  that are yet non-

M∅  (for n a> ) have (an)other non-trivial accessory property/properties. A specific B-GLC is 

considered authentic if the other non-trivial accessory property/properties of all ( ),p nM M∅≠  

(claimed by that B-GLC for n a> ) isn’t/aren’t a consequence of the fact that some 

,p nM M∅≠  for n a> . Authentic (at least conjectured as such) B-GLCs are “neutral” to GC 

(uncertainly “stronger” or “weaker” conjectures) as they claim “more” but also “less” than GC 
does (although they may be globally weaker and easier to formally prove than GC). 
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Other variants of the (generic) Goldbach Conjecture (GC) and GLCs include the statements that: 
 

1. “ […] Every [integer] number that is greater than 2 is the sum of three primes” (Goldbach's original 
conjecture formulated in 1742, sometimes called the "Ternary" Goldbach conjecture (TGC), 
written in a June 7, 1742 letter to Euler) (which is equivalent to: “every integer >2 is the sum of at 
least one triad of primes*”, *with the specification that number 1 was also considered a prime by 
the majority of mathematicians contemporary to Goldbach, which is no longer the case now]”). 

This (first) variant of GC (TGC) can be formulated using (ternary) 3,nM  (based on GIPs with 3 

elements) such as: 
 

a. Type A formulation variant as applied to ( *)not just to℘ ℘ :  

“ 3,2 ninteger n M M∅∀ > ⇔ ≠  (with , , 0n j kx ≥  and 
, ,n j kxP ∈℘ )”  

b. Type B (neutral) formulation variant : not supported. 
 

2. “Every even integer 4n >  is the sum of 2 odd primes.” (Euler’s binary reformulation of the 
original GC, which was initially expressed by Goldbach in a ternary form as previously explained). 
Since BGC (as originally reformulated by Euler) contains the obvious triviality that there are 
infinite many even positive integers of form 2p p p= +  (with p  being any prime), the non-

trivial BGC (ntBGC) sub-variant that shall be treated in this paper (alias “BGC” or “ntBGC”) is 

that: “every even integer 6n >  is the sum of at least one pair of distinct odd primes” [20,21] 

(which is equivalent to: “every even integer 3m>  is the arithmetic average of at least one pair 
of distinct odd primes”). Please note that ntBGC doesn’t support the definition of a GLC, as 
2p p p= +  is a trivial property of some even integers implying the complementary relative 

triviality that: 2 2c p p p≠ ≠ +  (with c being any composite natural number and p  being any 

prime). ntBGC can be formulated using (binary) 2,nM  (based on GIPs with 2 elements) such as: 

 

a. Type A formulation variant : “ 6even integer n∀ > , ( )2, nnM M M∅≠  AND 

( )2, nnM M  contains at least one line with both elements (GIPs)≠1 (as 1 2P =  is the only 

even prime) AND distinct to each other (as distinct GIPs means distinct primes as based on the 
bijection of the prime numbering function)” 

b. Type B (neutral) formulation variant : “ 6even integer n∀ > , all ( )2, nnM M  that are 

non-empty (as pS  may also contain empty ( )2, nnM M M∅=   for some specific [but still 

unfound] n  values ) will contain at least one line with both elements (GIPs)≠1 (as 1 2P =  is 

the only even prime) AND distinct to each other (as distinct GIPs means distinct primes as 
based on the bijection of the prime numbering function)”. 
 

3. “ 5odd integer n∀ > , n  is the sum of 3 (possibly identical) primes.” [22] (the [weak] Ternary 

Goldbach's conjecture/theorem [TGC/TGT] formally proved by Harald Helfgott in 2013  
[23,24,25], so that TGC is very probably [but not surely however] a proved theorem (as TGT), and 

no longer a “conjecture”) (which is equivalent to: “ 5odd integer n∀ > , n   is the sum of at 

least one triad of [possibly identical] primes”). TGC can be formulated using (ternary) 3,nM  

(based on GIPs with 3 elements) such as: 
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a. Type A formulation variant : “ 3,5 nodd integer n M M∅∀ > ⇔ ≠ ”  

b. Type B (neutral) formulation variant : not supported. 
 

4. “ 17integer n∀ > , n  is the sum of exactly 3 distinct primes.” (cited as “Conjecture 3.2” by 

Pakianathan and Winfree in their article, which is equivalent to: “ 17integer n∀ > , n  is the 

sum of at least one triad of distinct primes”) (this is a conjecture stronger than TGC, but weaker 
than BGC as it is implied by BGC). This stronger version of TGC (sTGC) can also be formulated 

using (ternary) 3,nM  (based on GIPs with 3 elements) such as: 

 

a. Type A formulation variant : “ 17integer n∀ > ⇒ 3,nM M∅≠  AND 3,nM  contains 

at least one line with all 3 elements (GIPs) distinct from each other” 

b. Type B (neutral) formulation variant : “ 17integer n∀ > ⇒  those 3,nM  which are 

M∅≠  will contain at least one line with all 3 elements (GIPs) distinct from each other” 

 

5. “ 5odd integer n∀ > , n  is the sum of a prime and a doubled prime [which is twice of any 

prime].” (Lemoine’s conjecture [LC ] [26,27]   which was erroneously attributed by MathWorld to 
Levy H. who pondered it in 1963 [28,29]. LC is stronger than TGC, but weaker than BGC. LC also 
has an extension formulated by Kiltinen J. and Young P. (alias the "refined Lemoine conjecture" 
[30]), which is stronger than LC, but weaker than BGC and won’t be discussed in this article (as 
this paper mainly focuses on those GLCs stronger than BGC). LC can be formulated using (ternary, 

not binary) 3,nM  (based on GIPs with 3 elements) such as: 

 

a. Type A formulation variant : “ 5odd integer n∀ > ⇒ 3,nM M∅≠  AND 3,nM  

contains at least one line with at least 2 identical elements (GIPs)” 

b. Type B (neutral) formulation variant : “ 5odd integer n∀ > ⇒ those 3,nM  which are 

M∅≠   will contain at least one line with at least 2 identical elements (GIPs)” 

 
6. There are also a few original conjectures on partitions of integers as summations of primes 

published by Smarandache F. [31] that won’t be discussed in this article, as these conjectures depart 
from VBGC (as VBGC presentation is the main purpose of this article). 
 

There are also a number of (relative recently discovered) GLCs stronger than BGC (and implicitly stronger 

than TGC), that can also be synthesized using ,p nM  concept:  these stronger GLCs (as VBGC also is) 

are tools that can inspire new strategies of finding a formal proof for BGC, as I shall try to argue next. 
Additionally, there are some arguments that Twin Prime Conjecture (TPC) [32] (which states that “there is 

an infinite number of twin prime (p) pairs of form ( ), 2p p+ “ ) may be also (indirectly) related to BGC as 

part of a more extended and profound conjecture [33,34,35], so that any new clue for BGC formal proof may 
also help in TPC (formal) demonstration. Moreover, TPC may be weaker (and possibly easier to proof) than 
BGC (at least regarding the efforts towards the final formal proof) as the superior limit of the primes gap 
was recently “pushed“ to be ≤246  [36], but the Chen's Theorem I (that ”every sufficiently large even 
number can be written as the sum of either 2 primes, OR a prime and a semiprime [the product of just 2 
primes]”   [37,38,39]  ) has not been improved since a long time (at least by the set of proofs that are accepted 
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in the present by the mainstream) except Cai’s new proved theorem published in 2002 (“There exists a 
natural number N such that every even integer n larger than N is a sum of a prime ≤ n0.95 and a semi-prime” 
[40,41]  , a theorem which is a similar but a weaker statement than LC that hasn’t a formal proof yet). 

 
1. The Goldbach-Knjzek conjecture [GKC]  [42] (which is stronger than BGC):  “

4even integer n∀ > , there is at least one prime number p  [so that] / 2n p n< ≤  and 

q n p= −  is also prime [with n p q= + implicitly] ”. GKC can also be reformulated as: “every 

even integer 4n >  is the sum of at least one pair of primes with at least one element in the semi-

open interval ”. GKC can be also formulated using (binary) 2,nM  (based on GIPs 

with 2 elements) such as: 
 

a. Type A formulation variant : “ 4even integer n∀ > ⇒ ( )2, nnM M M∅≠  AND 

( )2, nnM M  contains at least one line with at least one element x , so that ( , / 2xP n n ∈ 
.” 

b. Type B (neutral) formulation variant : “ 4even integer n∀ > ⇒  those ( )2, nnM M  

which are M∅≠  will contain at least one line with at least one element x , so that 

( , / 2xP n n ∈ 
.” 

 
2. The Goldbach-Knjzek-Rivera conjecture [GKRC]  [43] (which is obviously stronger than BGC, 

but also stronger than GKC for 64n ≥ ): “ 4even integer n∀ > , there is at least one prime 

number p  [so that] 4n p n< <  and q n p= −  is also prime [with n p q= +
implicitly] ”.  GKRC can also be reformulated as: “ 4even integer n∀ > ,n  is the sum of at 

least one pair of primes with one element in the double-open interval ( ), 4n n ”. GKRC can be 

formulated using (binary) 2,nM   (based on GIPs with 2 elements) such as: 

 

a. Type A formulation variant : “ 4even integer n∀ > ⇒ ( )2, nnM M M∅≠  AND 

( )2, nnM M  contains at least one line with one element x , so that ( ),4xP n n∈ .” 

b. Type B (neutral) formulation variant : “ 4even integer n∀ > ⇒ those ( )2, nnM M  

which are M∅≠  will contain at least one line with one element x , so that ( ),4xP n n∈ .” 

 

3. Any other GLC that establishes an additional inferior limit 0a >  for ( )2,r n  so that 

( )2, 0r n a≥ >  (like Woon’s GLC [44]) can also be considered stronger that BGC, as BGC only 

suggests ( )2, 0r n >  for any even integer 6n >  (which implies a greater average number of 

GIPs per each n  than the more selective Woon’s GLC does). 
 

( , / 2n n 
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There is also a remarkable set of original conjectures (many of them stronger than BGC and/or TPC) 
originally proposed by Sun Zhi-Wei [1,2]  [45,46], a set from which I shall cite [3] (by rephrasing) some of 
those conjectures that have an important element in common with the first special case of VBGC: the 

recursive 
xPP function in which xP  is the x-th prime and 

xPP  is the xP -th prime (which is denoted in the 

next cited conjectures as qP  which is the q-th prime, with q being also a prime number). 

 

1. Conjecture 3.1 (Unification of GC and TPC, 29 Jan. 2014). For any integer 2n >  there is at 

least one triad of primes ( ) ( ) ( )21 2 1 , 2 , 2qq n n q P+
 < < − − +
  

 (Sun’s Conjecture 3.1 

[SC3.1 or U-GC-TPC], which is obviously stronger than BGC and was tested up to 82 10n = × ) 
 

2. Conjecture 3.2 (Super TPC [SPTC], 5 Feb. 2014). For any integer 2n >  there is at least one 

triad ( ) ( ) ( )0 , 2 , 2
n kPkk n P prime P prime−

 < < + = + =
 

 (Sun’s Conjecture 3.2 [SC3.2 

or SPTC], which is obviously stronger than TPC and was tested up to 910n = ) [4,5] 
 

3. Conjecture 3.3 (28 Jan. 2014). For any integer 2n >  there is at least one pentad 

 

(Sun’s Conjecture 3.3 [SC3.3], which is obviously stronger than TPC as it implies TPC; SC3.3 was 

tested up to 72 10n = × ) 
 

4. Conjecture 3.7-i (1 Dec. 2013). There are infinite many positive even integers 3n >  which are 
associated with a hexad of primes 

( ) ( ) ( ) ( ) ( ) ( )1 , 1 , , , 1 , 1n n n nn n P n P n nP nP+ − + − + −    (Sun’s Conjecture 3.7-1 [SC3.7-

i] , which is obviously stronger than TPC as it implies TPC; 22 110n =  is the first/smallest value 
of n  predicted by SC3.7-I) 

 
5. Conjecture 3.12-i (5 Dec. 2013). All positive integers 7n >  have at least one associated pair 

( ) ( )1 , 2k
n kk n P prime−

 < − + =
 

 (Sun’s Conjecture 3.12-i [SC3.12-i]) 

 

6. Conjecture 3.12-ii (6 Dec. 2013). All positive integers 3n >  have at least one associated pair 

( ) ( )1 , ! n kk n k P prime−
 < − + =
 

 (Sun’s Conjecture 3.12-ii [SC3.12-ii]) 

 
7. Remark 3.19 (which is an implication of the Conjecture 3.19 not cited in this article). There is 

an infinite number of triads of primes ( ) ( ) ( )1 , 1 , 1q rq r P q P r > = − + − +
   (Sun’s Remark 

on Sun’s Conjecture 3.19 [SRC3.19]) 

                                                      
[1] Wikipedia page about Sun Zhi-Wei: https://en.wikipedia.org/wiki/Sun_Zhiwei 
[2] The personal page of Sun Zhi-Wei: http://maths.nju.edu.cn/~zwsun/ 
[3] See also Sun’s Z-W. personal web page on which all conjectures are presented in detail. URL:  http://math.nju.edu.cn/~zwsun 
[4] See also the first announcement of this conjecture made by Sun Z-W. himself on 6 Feb 2014). URL: https://listserv.nodak.edu/cgi-
bin/wa.exe?A2=NMBRTHRY;b81b9aa9.1402 
[5] See also the sequence A218829 on OEIS.org proposed by Sun Z-W. URLs: http://oeis.org/A218829;  
http://oeis.org/A218829/graph;   

( ) ( ) ( ) ( ) ( )0 1 , 6 1 , 6 1 , , 2n k n kk n k prime k prime P prime P prime− −
 < < − − = + = = + =
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8. Conjecture 3.21-i (6 Mar. 2014). For any integer 5n >  there will always exist at least one triad 

( ) ( ) ( )0 , 2 1 , k nk n k prime P k n prime⋅
 < < + = + ⋅ =
 

 (Sun’s Conjecture 3.21-i [SC3.21-

i]) 
 

9. Conjecture 3.23-i (1 Feb. 2014). For any integer 13n >  there is at least one triad of primes 

( ) ( ) ( )1 , 2 , 1n qq n q P q− < < + + +
 

 (the Sun’s Conjecture 3.23-i [SC3.23-i]). 

 

4 The ‘i-primeths’ ( *i℘ ) Definition 
 
The definition of the generalized “i-primeths” concept *i℘ . This paper chooses to use the term 
“primeth(s)” because this is the shortest and also the most suggestive of all the alternatives [6] used until now 
(as the “th” suffix includes, by abbreviation, the idea of “index of primes”). “Primeths” were originally 

defined as a subset of primes with (also) prime indexes (with the numbering of the elements of *℘ starting 

from 1 2P = ). As primes are in fact those positive integers with a prime index (the “prime index” being 

non-tautological defined as a positive integer >1 that has only 2 distinct divisors: 1 and itself), all the 
standard primes may be considered primeths with iteration order i=0 (or shortly: 0-primeths) NOT with i=1 

(as Fernandez first considered) (as the i=0 marks the genesis of *℘  from the ordinary *N ⊃℘  and 

cannot be considered an iteration on *℘ ). This new alternative definition (and notation) of i-primeths (i P

containing 
i

xP  elements with 0i ≥  and *x N∈ ) has three advantages, with an accent strictly on the 

number (i) of P-on-P iterations and NOT on the general standard definition (and notation) of iterated 

functions like ( ) ( ) ( )1 1P x P x P x≡ =o
 and ( ) ( )

( )1
.. ( )

i

i i

nested functionsP
P x P x P P P x

−

 
 ≡ =
 
 

o :  

1. The iteration order i is also the number of (“vertical”) iterations for producing the i-primeths from 

the 0-primeths ( )0 * *℘ =℘  (as in the original primeths definition, the standard primes were 

considered 1-primeths not 0-primeths, as if they were produced from N  using 1 vertical iteration, 

but N  doesn’t contain just primes, as * N℘ ≠ ); 

 
a. These iterations numbered by order i are easy to follow when implemented in different 

algorithms using a programming language on a computer; 

2. The concept of primes can be generalized as “i-primeths” *i℘ , with *i℘  also including *℘  as 

the special case of 0-primeths ( )0 * * ⊂℘ =℘ *i℘ ;  

3. This definition clearly separates *℘  from the ordinary N  using 0 (not 1) as a starting order (i) for 

*℘  ( )0 *℘  and considering N  as a ( )1 *− ℘  (a “bulky” ( )1 *− ℘  “contaminated” with composite 

positive integers that can be considered “(-1)-primeths” convertible to 0-primeths by different 
sieves of primes. 

 

                                                      
[6] Alternative terms for “primeths”: “higher-order prime numbers”,  “superprime numbers”, “super-prime numbers”, ”super-
primes”, ” superprimes” or “prime-indexed primes[PIPs]”. URL (OEIS page):  http://oeis.org/wiki/Higher-order_prime_numbers  
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a. 0 *℘  inevitably “contains” *N  by its indexes , in the sense that 0 *℘ contains all the generic 

 elements with indexes *x N∈  (an index x  that “scrolls” all *N ). The same prime may 

be part of more than one i-primeths subset *i℘ , as x  is not necessarily a prime. 

b. This slightly different definition of the i-primeths ( *i℘  containing generic 
i

xP  elements with 

0i ≥  and *x N∈ , as explained previously) is NOT a new “anomaly” and it was also used by 
Smarandache F. as cited by Murthy A. [47] and also by Seleacu V. and Bălăcenoiu I.  [48]. 

 

The elements of the generalized set of i-primeths *i℘ : 
 

 (alias 0-primeths) 

 (alias 1-primeths [7]) 

,  

… 

, with 

* {1,2}x N∈ −   
 

5 The Meta-conjecture VBGC - The Extension and Generalization of 
BGC as Applied on i-primeths ( )*i℘  

 

Meta-conjecture VBGC – main co-statements:  
 

1. Alternatively defining i-primeths as: 0

[0
]

x
iterations

of P on P

P P x

 
 =  
 
 

, ( )1

[1
]

x
iteration

of P on P

P P P x

 
 

=  
  
 

, 

( )( )2

[2
]

x
iterations

of P on P

P P P P x

 
 
 =
 
 
 

… , with ( )P x  being the x-th prime in the 

set of standard primes (usually denoted as ( )P x  or xP  and equivalent to0 xP  alias “0-primeths”) 

and the generic 
i

xP  being named the generic set of i-primeths (with” i” being  the  

“iterative”/recursive order of that i-primeth which measures the number of P-on-P iterations 
associated with that specific i-primeth subset).  

2. The inductive variant of (the meta-conjecture) VBGC (iVBGC) proposed in this paper states 
that:  

“All even positive integers ( ),2 2 fx a bm ⋅≥  AND (also) ( )2 ,2 2 fx a bm ≥ ⋅ , can be 

                                                      
[7] Primes subset (3, 5, 11, 17, 31, 41, 59, 67, 83, 109, 127, 157, …), also known as sequence A006450 in OEIS.  URL (OEIS page): 
https://oeis.org/A006450 

0
xP

( ) ( ) ( ) ( ){ }0 0 0 0 0
1 1 2 2 3 3, ,... ,...* * , x xP P P P P P P P= = = = = = =℘ =℘ = 2 3 5

( ) ( ) ( ){ }1 2

1 1 1 1
1 2 2 3 ,... ,...* ,

xp p x pP P P P P P P P= = = =℘ = = = =3 5

( ) ( ) ( ){ }
1 2

2 2 2 2
51 3 2 ,... ,...* ,

P PxPp p x pP P P P P P P P= =℘ = = = =5 11

21
1 2... ... ...

, , ..., , ...*
P PP x

i
P P P

i iterations of P i iterations of Pi iterations of P

i i i
xP P PP P P

 
  
 
 
  

℘ = = = =

( )( )( )
( )[ 0 ]

...
i

i
x

iterations

P P P P P x
≥

 
 =
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written as the sum of at least one pair of DISTINCT odd i-primeths x y
a bP P> , with the 

positive integers pair ( ), , 0a b with a b≥ ≥  defining the (recursive) orders of each of those 

i-primeths pair AND the pair of distinct positive integers ( ), , 1x y with x y> >  defining 

the indexes of each of those i-primeths pair, with 

 ( )
( )
( ) ( )
( ) ( ) ( )

( 1)( 1)( 2)

[( 1)( 1)( 3)/ ]

( 1)( 1)( 2) ( 2)

2 0

, 2 0

2 0 0

a b a b

a ab a b a

a b a b a b

for a b

fx a b for a b AND a

for a b AND a OR b

+ + + +

+ + + + −

+ + + + − + −

 = =

= = >


≠ > >   

 

and 

( )
( )
( ) ( )
( ) ( ) ( )

2

( 1)( 1)( 2)

[( 1)( 1)( 3)/ ]

( 1)( 1)(

2

2) ( 2)

2 0

, 2 0

2 0 0

a b a b

a b a b a

a b a b a

a

b

for a b

fx a b for a b AND a

for a b AND a OR b

+ + + +

+ + + + −

+ + + + − + −

 = =

= = >


≠ > >   

.”  

a. A secondary inductive (form of) (the meta-conjecture) VBGC (siVBGC[a,0]) proposed in 

this paper states that: “All even positive integers ( )22 intm fy a⋅≥    , with 

( ) 4afy a e= , can be written as the sum of at least one pair of DISTINCT odd i-

primeths 
0

x y
aP P> , with the positive integers pair ( ),0 , 0a with a>  defining the 

(recursive) orders of the i-primeths pair ( )0,x y
aP P  AND the distinct positive integers 

pair ( ), , 1x y with x y> >  defining the indexes of each of those i-primeths.”  

 
3. The analytical variant of (the meta-conjecture) VBGC (aVBGC) proposed in this paper (from 

which the previous inductive VBGC was derived) states that: “For any pair of finite positive 

integers ( ), , 0a b with a b≥ ≥  defining the (recursive) orders of an a-primeth ( )aP  and a b-

primeth respectively ( )bP ,  there will always exist a single finite positive integer 

( ), , 3a b b an n= ≥  so that, for any positive integer ,a bm n>  it will always exist at least 

one pair of  finite distinct positive integers ( ), , 1x y with x y> >  (indexes of distinct odd i-

primeths) so that: 2x y
a bP P m+ =  and a b

x yP P>  and the function 

( ) ( ) ( ), ,, , 3a b b af a b f b a n n= = = ≥  has a finite positive integer value for any 
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combination of finite positive integers ( ),a b , without any catastrophic-like infinities for 

any ( ),a b  pair of finites positive integers.“ 

 

a. Important note. I have chosen the additional conditions ( ) ( )0 1a b x y≥ ≥ ∧ > > ⇔  

a b
x yP P> so that to lower the no. of lines per each Goldbach Matrix (GM) and to simplify 

the algorithm of searching  ( ),x y
a bP P  pairs, as the set aP  is much less dense that the set 

bP 

for a b>  AND the sieve using aP  (which searches an  aP  starting from 2 3m to ) finds a 

( ),a b
x yP P  pair much more quicker than a sieve using 

bP (if a b> ). 

b. ( ) ( )0,0n= =f 0,0 3  

c. ( ) ( ) ( )1,0 0,10,1f n n= = = =f 1,0 3 ; ( )1,0f < ( )2,0 2564f = ; 

d. ( ) ( ) ( )2,0 0,20,2f n n= = = =f 2,0 2 564 ; ( )2,0f < ( )1,1f ; the conjectured sequence 

of all even integers that cannot be expressed as the sum of two distinct 2-primeth and 0-primeth 

2 0
x yP P>  was also submitted to OEIS, reviewed and approved as A282251 [8] 

e. ( ) ( )1,1n= =f 1,1 40 306; ( )1,1f > ( )2,0 2564f = , as also predicted by 

( ) ( )1,1 2,0fx fx> ; 

f. ( ) ( ) ( )3,0 0,30,3f n n= = = =f 3,0 125 771; ( )3,0f > ( )2,0 2564f = , as also 

predicted by ( ) ( )3,0 2,0fx fx> ; ( )3,0f < ( )2,1 1 765 126f = , as also predicted by 

( ) ( )3,0 2,1fx fx< ; ( )3,0f > ( )1,1 =40 306f , as also predicted by ( ) ( )3,0 1,1fx fx>  

g. ( ) ( ) ( )2,1 1,21,2f n n= = = =f 2,1 1 765 126; ( )2,1f  > ( )3,0 125 771f = , as also 

predicted by ( ) ( )2,1 3,0fx fx> ; ( )2,1f < ( )2,2 161 352 166f = , as also predicted by 

( ) ( )2,1 2,2fx fx< ; 

h. ( ) ( ) ( )4,0 0,40,4f n n= = = =f 4,0 6 204 163; ( )4,0f  > ( )3,0 125 771f = , as also 

predicted by ( ) ( )4,0 3,0fx fx> ; ( )4,0f < ( )2,2 161 352 166f = , which is also 

predicted by ( ) ( )4,0 2,2fx fx< ; 

                                                      
[8] Official page at URL: https://oeis.org/A282251; Complete review at URL: https://oeis.org/draft/A282251; Review history at URL: 
https://oeis.org/history?seq=A282251 
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i. ( ) ( ) ( )3,1 1,31,3f n n= = = =f 3,1 32 050 472; ( )3,1f > ( )2,1 1 765 126f = , as also 

predicted by ( ) ( )3,1 2,1fx fx> ; ( )3,1f > ( )4,0 6 204 163f =  as also predicted by 

( ) ( )3,1 4,0fx fx> ; ( ) ( )3,1 2,2fx fx>  erroneously predicts that ( )3,1f ; 

( ) 133,1 7.04 10fx ≅ × overestimates  the computed( )3,1f ; 

j. ( ) ( )2,2n= =f 2,2 161 352 166; ( )2,2f  > ( )2,1 1 765 126f = , as also predicted by

( ) ( )2,2 2,1fx fx> ; ( )2,2f  > ( )4,0 6 204 163f = , as also predicted by

( ) ( )2,2 4,0fx fx> ; ( )2,2f  < ( )5,0 260 535 479f = , which is also predicted by 

( ) ( )2,2 5,0fx fx< ; 

k. ( ) ( ) ( )5,0 0,50,5f n n= = = =f 5,0 260 535 479; ( )5,0f > ( )4,0 6 204 163f = , 

as also predicted by ( ) ( )5,0 4,0fx fx> ; however, ( ) 115,0 5.5 10fx ≅ ×  overestimates 

( )5,0f  over 102 10m = , as also in the case of ( ) 133,1 7.04 10fx ≅ ×  overestimating 

( )3,1f ; 

l. ( ) ( ) ( )4,1 1,41,4f n n= = = =f 4,1 ?  (computing in progress); ( )f 4,1  is expected to be 

smaller than ( )3,2f  according to the prediction ( ) ( )4,1 3,2fx fx< ; obviously ( )f 4,1  is 

expected to be larger than ( )3,1f  as also according to the prediction ( ) ( )4,1 3,1fx fx> ; 

( )f 4,1  is ALSO expected to be larger than ( )3,3f  as according to the prediction 

( ) ( )4,1 3,3fx fx> ; however, ( ) 204,1 1.5 10fx ≅ ×  surely overestimates ( )4,1f ; 

m. ( ) ( ) ( )3,2 2,32,3f n n= = = =f 3,2 ? (computing in progress); ( ) 243,2 2.4 10fx ≅ ×  

surely overestimates ( )3,2f ; 

n. ( ) ( )3,3n= =f 3,3 ?  (computing in progress); ( ) 133,3 3.5 10fx ≅ ×  surely overestimates 

( )3,3f  over 102 10m = ; 

o. …[working progress on other higher indexes function values] 

p. The 2D matrix/array of the finite values ( ),f a b  is a conjectured meta-sequence of integers 

and was also proposed to OEIS, BUT rejected in the meantime, with the main argument that 
OEIS doesn’t accept conjectured meta-sequences (the sequence of f values was considered “too 
ambitious”) and that it hadn’t an “appropriate form”, although OEIS doesn’t mention this (main) 
exclusion-criterion (applied to VBGC f[a,b] meta-sequence) explicitly in their publishing policy 
[9]. 

 

                                                      
[9] Review history at URL: https://oeis.org/history?seq=A281929&start=50 (last page URL); Review history in pdf downloadable 
format at URL: http://dragoii.com/VBGC_A281929_OEIS_rejection_history.pdf 
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4. Interestingly, ( ),f a b  applied on [ ]0,5a∈  and [ ]0,5b∈  has its values in the set 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ),

  
 
  

3 , 2564 , 40306 , 125 771 , 1 765 126 ,
F =

6 204 163 , 32 050 472 161 352 166 , 260 535 479
 which has an exponential 

(relatively) compact pattern such as: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }, ,
≅
=FE 1.1 , 7.8 , 10.6 , 11.7 , 14.4 , 15.6 , 17.3 18.9 19.4, with a relatively 

constant geometric progression (of about 1.2 0.15± ) between its last 7 elements so that  

.

 

The single exception of this rule is the gap between the exponents 1.1≅  and 7.8≅ .  See the next 
figures. 

 

 
 

Fig. D-1. The exponential pattern-1 of  the ( ),f a b  values for [ ]0,5a∈  and [ ]0,5b∈  
  

 
 

Fig. D-2. The exponential pattern-2 of  the ( ),f a b  values for [ ]0,5a∈  and [ ]0,5b∈  

( ) ( ) ( ) ( )
( ) ( ) ( )

( )
19.4 / 18.9 18.9 / 17.3 17.3 / 15.6 15.6 / 14.4

14.4 / 11.7 11.7 / 10.6 10.6/ 7.8

≅ ≅ ≅ ≅≅ ≅ ≅ ≅

≅ ≅ ≅ ≅ ≅ ≅

 ≅ ≅ ≅ ≅
  ≅
 ≅ ≅ 

1.2 ±0.15

y = 14.9e2.0537x

R² = 0.9138

0.00E+00

2.00E+08

4.00E+08

6.00E+08

8.00E+08

1.00E+09

1.20E+09

1.40E+09

1.60E+09

1.80E+09
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f(a,b)=f(b,a)
f(a,b)=f(b,a)

Expon. (f(a,b)=f(b,a))

y = 2.0537x + 2.7013

R² = 0.9138

0

5
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25
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ln[f(a,b)]
ln[f(a,b)]

Linear (ln[f(a,b)])
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a. ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ),

  
 
  

3 , 2 564 , 40 306 , 125 771 , 1 765 126 ,
F =

6 204 163 , 32 050 472 161 352 166 , 260 535 479

 has ALSO a correspondent matrix in 

which a  is a column index and b  is a line index  

 and a 

matrix of exponents in which a  is also a column index and b  is also a line index 

( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

0,0 1,0 0,1 2,0 0,2 3,0 0,3 4,0 0,4 5,0 0,5

0,1 1,0 1,1 2,1 1,2 3,1 1,3 4,1 1,4 5,1 1,5

0,2 2,0 1,2 2,1 2,2 3,2 2,3 4,2 2,4 5,2 2,5

0,3 3,0 1,3 3,1 2,3 3,2 3,3 4,3 3,4 5,3
,f a b

n n n n n n n n n n n

n n n n n n n n n n n

n n n n n n n n n n n
ME LN

n n n n n n n n n n

= = = = =

= = = = =

= = = = =
=

= = = = ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

3,5

0,4 4,0 1,4 4,1 2,4 4,2 3,4 4,3 4,4 5,4 4,5

5,50,5 5,0 1,5 5,1 2,5 5,2 3,5 5,3 4,5 5,4

n

n n n n n n n n n n n

n n n n n n n n n n n

 
 
 
 
 
 
 =
 
 = = = = = 
 = = = = =  

, 

( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

,

? ?

? ? ?

? ? ? ?

? ? ? ? ?

? ? ? ? ?

f a b
ME

≅

 
 
 
 

=  
 
 
 
  

1.1 1.1 7.85 11.74 15.64 19.38

1.1 10.6 14.38 17.28

7.85 14.38 18.9

11.74 17.28

15.64

19.38

.   

 
b. ( ),f a b

ME  can be graphed as a 2D surface in a 3D space: see the next figure. 

 

( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

0,0 1,0 0,1 2,0 0,2 3,0 0,3 4,0 0,4 5,0 0,5

0,1 1,0 1,1 2,1 1,2 3,1 1,3 4,1 1,4 5,1 1,5

0,2 2,0 1,2 2,1 2,2 3,2 2,3 4,2 2,4 5,2 2,5

0,3 3,0 1,3 3,1 2,3 3,2 3,3 4,3 3,4 5,3 3
,f a b

n n n n n n n n n n n

n n n n n n n n n n n

n n n n n n n n n n n
M

n n n n n n n n n n n

= = = = =

= = = = =

= = = = =
=

= = = = =( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
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( ) ( ) ( ) ( ) ( )
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5,50,5 5,0 1,5 5,1 2,5 5,2 3,5 5,3 4,5 5,4

? ?

? ?

n n n n n n n n n n n

n n n n n n n n n n n

 
 
 
 
 
 
 
 
 = = = = = 
 = = = = =  

=

3 3 2564 125 771 6 204 163 260 535 479

3 40 306 1 765 126 32 050 472

2564 1 765 126 161 352 166 ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

?

? ? ? ?

? ? ? ? ?

? ? ? ? ?

 
 
 
 
 
 
 
 
  

125 771 32 050 472

6 204 163

260 535 479



Fig. D-3. The 3D graph of 
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Fig. D-4. The almost linear growth of 
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3. The 3D graph of 
( ),f a b

ME  cell values for [ ]0,5a∈  and [ ]0,5b∈  

The previous matrices generate half-dome-like graphs, apparently with no closed “depression” 
regions, as all elements tend to become greater when: moving on the lines from left to right, 
moving on the columns from up to down, moving on the diagonals, from sides to the center. The 
exponents from each column of 

( ),f a b
ME  tend to grow almost linearly from up to down (but also 

on diagonals, from left to center-right and vice versa): see the next figure. 
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d. Furthermore, the symmetrical function ( ) ( ), ,fx a b fx b a=  (proposed in the inductive variant 

of VBGC) generates positive integers that are relatively close BUT strictly larger than the values 

of ( ),f a b  for [ ]0,5a∈  and [ ]0,5b∈ , with also a half-dome-like graph. 

e. The function  ( ),fx a b  has its values in the matrix  

 

 in which each 

element is strictly larger than its correspondent element from ( ),f a b
M   

 

f. Additionally, the function  
 

( )
( )
( ) ( )
( ) ( ) ( )

2

( 1)( 1)( 2)

[( 1)( 1)( 3)/ ]

( 1)( 1)(

2

2) ( 2)

2 0

, 2 0

2 0 0

a b a b

a b a b a

a b a b a

a

b

for a b

fx a b for a b AND a

for a b AND a OR b

+ + + +

+ + + + −

+ + + + − + −

 = =

= = >


≠ > >   

 has 

strictly larger but even more closer values to the values of  ( ),f a b
M , BUT predicts distorted inequalities 

between some terms (when compared to the inequalities between some elements of ( ),f a b
M ). 

 

( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

,

... ...

... ... ...

... ... ... ...

... ... ... ... ...

... ... ... ... ...

fx a b
M

≅

 
 
 
 
 
 =
 
 
 
 
  

5 8 11

5 8 13

8 8

5 13

8

11

4 128 4 096 5.2×10 2.7×10 5.5×10

128 5.2×10 5.4×10 7×10

4 096 5.4×10 7.6×10

5.2×10 7×10

2.7×10

5.5×10

( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

,

? ?

? ? ?

? ? ? ?

? ? ? ? ?

? ? ? ? ?

f a b
M

 
 
 
 

=  
 
 
 
  

3 3 2564 125 771 6 204 163 260 535 479

3 40 306 1 765 126 32 050 272

2564 1 765 126 161 352 166

125 771 32 050 272

6 204 163

260 535 479
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M

≅

 
 
 
 
 
 =
 
 
 
 
  

5 8 11

8 13

8

5 13

8

11

5

8
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g. The first line of  ( ),f a b
ME  (which is identical to its first column), has sufficiently many terms 

to create a function that reasonably approximates the elements on this first line/column, such as: 

( ) [ ]4fey a a= = 0 4 8 12 16 20, with 

( ) 6( ) 4fey a afy a e e
≅
 = = =  

61 54.6 2981 162754.8 8.8×10 485×10, 

which is very close (with larger values) to the first of ( ),f a b
ME  

( ) ( ) ( ) ( ) ( ) ( )  1.1 1.1 7.85 11.74 15.64 19.38 and the first line of ( ),f a b
M

( ) ( ) ( ) ( ) ( ) ( )  3 3 2564 125 771 6 204 163 260 535 479 respectively.  

 

i. ( )6fy  predicts a value for ( ) ( ) 106,0 6 2.65 10f fy≅ ≅ ×  which is beyond the 

verification capabilities of our current software: this hypothesis was also verified with our 

software and confirmed that ( )6,0f  is larger than the limit 102 10m = . The exception of 

VBGC(6,0) smaller-and-closest to 102 10m =  is 9 997 202 434 = 2 × 4 998 601 217 

ii.  ( )7fy  predicts a value for ( ) ( ) 127,0 7 1.45 10f fy≅ ≅ ×  which is far beyond the 

verification capabilities of our current software. 

iii.  On the second line/column of ( ),f a b
ME  ( ) ( ) ( ) ( ) ( ) ( )  1.1 10.6 14.38 ? ? ? , the 

elements may also grow in a arithmetical progression with an (exponential)  step 4s
<
≅  

(starting from ( )1,1 10.6Ef ≅  to ( )2,1 14.38 10.6Ef s≅ ≅ + ), with the exception of a first gap 

between ( )0,1 1.1Ef ≅  and ( )1,1 10.6Ef ≅ , which is correspondent to the gap between 

( )1,0 1.1Ef ≅  and ( )2,0 7.85Ef ≅ . As observed, the step 4s ≅  is conserved on all 

lines, columns and secondary diagonals, so that the main diagonal probably has a step of 

2 8s ≅ . 

1. The 5th unknown element ( ) ( )4,1Ef = ?  from the 2nd line may have a value of 

( ) ( )
?

4,1 2,1 2 14.38 8 22.38Ef ef s≅ + = + ≅    as predicted by the same step 4s ≅ . An 

( )
?

4,1 22.38Ef ≅  corresponds to a hypothetical 

( )
?

(4,1) 22.38 94,1 5 242 162 809 5.2 10Eff e e = ≅ ≅ ≅ ×   which is ALSO under the limit 

102 10m =  and may also be (relatively) verified with our software. However, as 

( )
?

94,1 5.2 10f ≅ ×  is probably very close to the limit 102 10m = , the conjecture VBGC[4,1] 

may not be testified by a “sufficiently” large gap) 
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2. Other values of ( ),f a b  which are predicted to be under the limit 102 10m =  are: 

( ) ( )
?

1,4 4,1f f= ≅  
95.2×10 , ( ) ( ) ( )

?

3,2 2,3f f to= ≅  
95.2 8.8 ×10 : all the predicted values 

are very close to the limit 102 10m = , so that the conjectures VBGC[a,b] (corresponding to those 
predicted values) may not be testified by a “sufficiently” large gap. See the next table. 

 
Table T-1. The verified values of ( ), , 0f a b with a b≥ ≥  (written as exact positive integers: the 

shaded cells of the table) and the estimated maximum values of ( ),f a b  using the step 4s ≅  “rule” 

(written in exponential format) 
 

( ),f a b
 

0 1 2 3 4 5 6 7 

0 3 3 2,564 125,771 6,204,163 260,535,479 1.4E+10 7.8E+11 
1 3 40,306 1,765,126 32,050,472 5.2E+09 2.9E+11 1.6E+13 8.5E+14 
2 2,564 1,765,126 161,352,166 5.2E+09 2.9E+11 1.6E+13 8.5E+14 4.7E+16 
3 125,771 32,050,472 8.8E+09 2.9E+11 1.6E+13 8.5E+14 4.7E+16 2.5E+18 
4 6,204,163 5.2E+09 4.8E+11 1.6E+13 8.5E+14 4.7E+16 2.5E+18 1.4E+20 
5 260,535,479 2.9E+11 2.6E+13 8.5E+14 4.7E+16 2.5E+18 1.4E+20 7.6E+21 
6 1.4E+10 1.6E+13 1.4E+15 4.7E+16 2.5E+18 1.4E+20 7.6E+21 4.1E+23 
7 7.8E+11 8.5E+14 7.8E+16 2.5E+18 1.4E+20 7.6E+21 4.1E+23 2.3E+25 

 

h. ( ) ( ) 4fey a afy a e e= = predicts so accurately the first line of ( ),f a b
M , so that this paper  also 

proposes a secondary inductive (form of) VBGC (siVBGC[a,0]) which states that:  

“Any/every even positive integer ( )2 2 intm fy a≥ ⋅    , with ( ) 4afy a e= , can be written 

as the sum of at least one pair of DISTINCT odd i-primeths 0
x y

aP P> , with the positive 

integers pair ( ),0 , 0a with a>  defining the (recursive) orders of  the i-primeths pair 

( )0,x y
aP P  AND the distinct positive integers pair  ( ), , 1x y with x y> >  defining the 

indexes of each of those i-primeths.”.  
i. The set of conjectures siVBGC(a,0) can be used to verify much more rapidly (cost/time-

efficiently) ntBGC, by searching using only the subsets aP  , starting from x
aP  which is 

closest to ( )42 2 int am e≥ ⋅  down to 2
aP  and testing the primality of ( )2 x

am P−  

 
i. Interestingly, the differences between consecutive elements on any line or column of 

( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

,

? ?

? ? ?

? ? ? ?

? ? ? ? ?

? ? ? ? ?

f a b
ME

≅

 
 
 
 

=  
 
 
 
  

1.1 1.1 7.85 11.74 15.64 19.38

1.1 10.6 14.38 17.28

7.85 14.38 18.9

11.74 17.28

15.64

19.38

 have a 1st or a 2nd  value that 

is slightly above 4s ≅ , with all the other values (the 2nd /3rd, the 4th etc) being smaller or 

approximately equal to 4s ≅ : see the next tables and graphs. 
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Table and figure TF-2a. The differences between consecutive (known) elements from the lines of  

( ),f a b
ME  , with a  being the index of a column of ( ),f a b

ME  and b  being the index of a line of 

( ),f a b
ME ) 

 

      

 0 6.75 3.89 3.9 3.74 

 9.51 3.78 2.90 <4; <3; 
 <2? 

<4; <3; 
 <2? 

 6.53 4.52 2.38 <4; <3; 
 <2? 

<4?; <3?;  
<2?; <1? 

 5.54 <5?;  
 <4? 

<5?;  
 <4? 

<4?; <3?;  
<2?; <1? 

 

 <5?;  
 <4? 

<5?;  
 <4? 

<4?; <3?;  
<2?; <1? 

  

 <5?;  
 <4? 

<4?; <3?;  
<2?; <1? 

   

 

 
 

Table and figure TF-2b. The differences between consecutive (known) elements from the columns of  

( ),f a b
ME  , with a  being the index of a column of 

( ),f a b
ME

 and b  being the index of a line of 
( ),f a b

ME
) 

 
       

 0 9.51 6.53 5.54 <6?;  
<5?;  <4? 

<6?;  
<5?;  <4? 

 6.75 3.78 4.52 <6;  
<5?;  <4? 

<6?;  
<5?;  <4? 

<6?;  
<5?;  <4? 

 3.89 2.90 <5;  
<4?;  <3? 

<6;  
<5?;  <4? 

<6?;  
<5?;  <4? 

<6?;  
<5?;  <4? 

 3.9 <4; <3; 
 <2? 

<5;  
<4?;  <3? 

<6;  
<5?;  <4? 

<6?;  
<5?;  <4? 

 

 3.74 <4; <3;  
<2? 

<4; <3; <2? <6;  
<5?;  <4? 

  

 

( )
( )

1,

,

f a b

f a b

+ − ( )
( )
1,

0,

f b

f b

− ( )
( )
2,

1,

f b

f b

− ( )
( )
3,

2,

f b

f b

− ( )
( )
4,

3,

f b

f b

− ( )
( )
5,

4,

f b

f b

−

0b =
1b =
2b =
3b =
4b =
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b=0

b=1

b=2

b=3

( )
( )

, 1

,

f a b

f a b

+ − 0a = 1a = 2a = 3a = 4a = 5a =

( ) ( ),1 ,0f a f a−

( ) ( ),2 ,1f a f a−

( ) ( ),3 ,2f a f a−

( ) ( ),4 ,3f a f a−

( ) ( ),5 ,4f a f a−
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6 Conclusions on VBGC 
 
1. Essentially, VBGC(a,b) is an extension and generalization of BGC as applied on the generalized 

concept of all subsets of super-primes of any iteration order i, generically named "i-primeths" in 
this paper. 

 
a. VBGC has an inductive variant and an analytical variant, which both apply to any i-

primeth subset. 
b. Obviously, VBGC contains the attribute “vertical” it its name motivated by the fact that 

VBGC is a “vertical” (recursive) generalization of the ntBGC on the infinite superset of i-
primeths. 

 
2. VBGC can be considered a "meta-conjecture", as it essentially (and alternatively) states/predicts an 

infinite number of BGC-like conjectures (“stronger” than BGC) which are generically indexed as 

VBGC(a,b), each associated with a pair  ( ),a b N∈  and a finite positive integer ( ),a b
n N∈  

a. VBGC(0,0) is equivalent to the non-trivial variant of BGC (ntBGC), as defined in the 
Section III of this article. 

b. VBGC(1,0) is a Goldbach-like Conjecture (GLC) stronger and more elegant than ntBGC, as 

it acts on a limit ( )2 1,0 6f =  identical to ntBGC inferior limit (which is ( )2 0,0 6f =

) BUT the associated ( )1,0G m  (which counts the number of pairs of possible GIPs for any 

even integer 3m> ) has significantly smaller values than the function ( )0,0G m of 

ntBGC [which is VBGC(0,0)] 

c. VBGC(2,0) is obviously stronger than VBGC(1,0) with ( )2,0G m  having smaller non-

zero values than ( )1,1G m  for ( )( )2,0 ,m f∈ ∞  

d. VBGC(1,1) (anticipated by my discovery of VBGC(1,0) from 2007 and officially registered 
in 2012 at OSIM) is obviously stronger than VBGC(1,0 ) and is equivalent to Bayless-
Klyve-Oliveira e Silva Goldbach-like Conjecture (BKOS-GLC) published in Oct. 2013 [49] 

alias “Conjecture 9.1” (rephrased) (tested by these authors up to 92 10m = ): “all even 
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integers ( )( )2 2 40306 2 1,1m f > ⋅ =   can be expressed as the sum of at least one pair 

of prime-indexed primes [PIPs] (1-primeths 1
xP  and 1 yP  )”. This article of Bayless. Klyve 

and Oliveira (2012, 2013) was based on a previous article by Barnett and Broughan 
(published in 2009) [50], but BKOS-GLC was an additional result to this 2009 article. Our 

new software retested and reconfirmed VBGC(1,1) up to 102 10m =  and also helped 

verifying VBGC(a,b) for much more ( ),a b  positive integer pairs  [10]. 

 
3. VBGC is “much stronger” and general than BGC and proposes a much more rapid and efficient (at-

least-one Goldbach index partition [GIP])-sieve than the Goldbach-Knjzek-Rivera conjecture 
(GKRC). 
  

a. The Goldbach Matrices (GMs) (containing all possible GIPs) generated by VBGC has a 
smaller nof. lines than the GMs of GIPs generated by GKRC. VBGC is a useful optimized 
sieve to push forward the limit 4·1018 to which BGC was verified to hold  [51,52].  

b. All VBGC(a>0,b≥0) (including siVBGC) can be used to produce more rapid algorithms for 
the experimental verification of ntBGC for very large positive integers. A first experiment 

would be to re-test BGC up to that limit 182 4 10m = ×  alternatively using siVBGC and to 
compare the global times of computing. When verifying ntBGC for a very large number N , 
one can use the aVBGC(a,b) or siVBGC(a,b)  with a minimal positive value for the 

difference ( ),N f a b−   . For example, in the case of VBGC(1,0), the average number of 

attempts to find the first pair (x,y) for each integer m, in the interval [3,2m] tends 

asymptotically to ( ) ln  = ln(n)/2n  when searching just the 1-primeths subset in 

descending manner, starting from the largest 1-primeth 1 2 1xP m≤ −  and verifying if 

( )12 xm P−  is a 0- primeth) 

 

4. When ,a b and m→ ∞ → ∞ → ∞ , ( )( ), , 1 1a bG f a b
≥

+ →  and the “comets” of 

VBGC(a,b) tend to narrow progressively for each pair of positive integers 

( )2 2 2 1 2 1, ,a b witha a and b b> > . 

5. VBGC is a potential important (unified) conjecture of primes and a very special self-similar 

property of the primes as the rarefied set *i℘  is self-similar to the more dense set 
( )1

*
i− ℘  in 

respect to the ntBGC. In other words, each of the i-primeths sets behaves as a “summary of” the 0-
primeths set in respect to the ntBGC: this is a (quasi)fractal-like BGC-related behavior of the 
infinite number of the i-primeths sets. 
 

a. Essentially, VBGC conjectures that ntBGC is a common property of all i-primeths sets (for 
any positive integer order i), differing just by the inferior limit ( ) ( ),

,
a b

f a b n=  of each 

VBGC(a,b). The set of values of ( ),f a b  is a set of critical density thresholds/points of each 

                                                      
[10]  The code-source (written by Mr. George Anescu in Microsoft Studio 2015 - Visual C++ language/environment using parallel 
processing) that was used to test BKOS-GLC and VBGC up to n=1010 (on a laptop PC with an IntelR CoreTM processor i7-3630 QM 
CPU at 2.4 GHz with 4 processors (8 hyper-threads), can be found at this URL: 
https://drive.google.com/open?id=0Bws5l5MW9z0pY0lpbWJRZmNaMGc; the old variant can be found at this URL: 
http://dragoii.com/test_primes.rar 
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i-primeths set in respect to the superset of VBGC(a,b) conjectures. All Goldbach comets 
associated with all known VBGC(a,b) are self-similar to each other and to the entire superset 
of comets. 

b. Batchko R.G. has also reported other quasi-fractal/quasi-self-similar structure in the 
distribution of the prime-indexed primes [53]: Batchko also used a similar general definition 
for primes with (recursive) prime indexes (PIPs), briefly named in my article as “i-primeths”. 

c. Carlo Cattani and Armando Ciancio also reported a quasi-fractal distribution of primes 
(including i-primeths) similar to a Cantor set (Cantor dust) by mapping primes and i-
primeths into a binary image which visualizes the distribution of i-primeths [54]. VBGC may 
be an intrinsic property of all sets of i-primeths that can also explain OR be explained by this 
Cantor dust-like distribution of these i-primeths sets. 

d. Obviously, all sets 
( )0

*
i> ℘  are subsets of 0 * *℘ =℘  and come in an infinite number: 

this family of subsets is governed/defined by the Prime Number Theorem. There is a 
potential infinite number of rules/criterions/theorems to extract an infinite number of subsets 

from *℘  (grouped in a family of subsets defined by that specific rule/criterion/theorem: 
like the Dirichlet's theorem on arithmetic progressions for example). It would be an 
interesting research subfield of BGC to test what are those families (of subsets of primes) 

that respect ntBGC and generate functions with finite values similar to ( ) ,, a bf a b n= . 

This potential future research subfield may also help in optimizing the algorithms used in the 
present for ntBGC verification on large numbers.  

e. It is an interesting fact per se that all 
( )0

*
i> ℘  subsets have very low densities (when 

compared to 0 * *℘ =℘  and *N ) , but these low densities are sufficiently… large to 

allow the existence of a function ( ),f a b  with finite values for any pair of finites ( ),a b . 

f. A real challenge in the future (concerning VBGC) is to calculate the values of the function 

( ) ,, a bf a b n=  and test/verify VBGC(a,b) for large positive integers pairs (a,b), including 

the pairs ( ),a b with relatively large ( )a b−  differences. 

 

7 Potential Applications of VBGC: 
 
1. As the (weak) Ternary Goldbach Conjecture (TGC) is considered a consequence of BGC, VBGC 

can be used as a model to also formulate a Vertical (generalization) of the Ternary Goldbach 
Conjecture (VTGC) as an analogous consequence of VBGC, with a corresponding (potential 
infinite) meta-sequence of conjectures VTGC(a,b,c) with an associated function 

( ) , ,, , a b cf a b c n= . 

2. VBGC can be used to optimize the algorithms of finding very large new primes (i-primeths) smaller 
but closest possible to a chosen (very large) even number 2q m= :  

a. Step 1. One may choose a set *a℘  and a conjecture VBGC(a,b) with positive integer 

order b  chosen so that the known ( ),a b
n  to be smaller but closest possible to 2q m= . 

b. Step 2. One may then test only the primality of the differences ( )x x
ad q P= −  (starting 

from 1x =  to larger positive integer indexes, in ascendant order) which have the potential 

to be i–primeths of type y
bP . 
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3. VBGC can offer a rule of symmetric/asymmetric decomposition of Euclidean/non-Euclidean 

finite/infinite spaces with a finite (positive integer) number of dimensions 2d n=  into pairs of 
spaces, both with a (positive) i-primeth number of dimensions. According to VBGC, an finite 

regular Euclidian/non-Euclidean 2n-space with volume 2nV  (with n>2) can always be 

decomposed to permit symmetry/asymmetry such as: 

( )
( )

2 ,
PP

P P

ba yx
a bx ynV k V V k r r with k space volume specific constant

 
 
 

 
 
 

   
= ⋅ × = ⋅ × =     

  

 

a. In this way, VBGC can also be used in M-Theory to simulate decompositions of 2N-

branes (with finite [positive] integer number of dimensions 2d n= ) into pair of x
aP -

brane and y
bP  -brane, both branes with a (positive) i-primeth number of dimensions. 

4. This type of vertical generalization (generating a meta-conjecture) may be the start of a new 
research sub-field in which other conjectures may be hypothesized to also have vertical 
generalizations applied on i-primeths. For example, a hypothetical vertical Polignac's conjecture (a 
“minus” version of BGC: “for any positive even number n, there are infinitely many prime gaps of 
size n” or “ there are infinitely many cases of two consecutive prime numbers with difference n”) 
may speed up the searching algorithms to find very large primes (smaller but closest to a chosen 
positive integer superior limit m ). 
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Addendum 
 
The Short Description of the Software Created and Used to Verify 

VBGC 
 
The software was created in Microsoft Visual C++ and uses parallel programming techniques.  At first, it 
created (and stored on hard-disk) a set of “.bin” files containing all known i-primeths in the double-open 

interval( )101,10 : see the next table. 

Table E. The files used by the software 
 

Set of i-primeths File storing the set of i-primeths File dimension on hard-disk 
(non-archived) 

Number of i-primeths stored 
in the file 

0-primeths p1_10000000000.bin ~3.55 Gb … 
1-primeths p2_10000000000.bin ~188 Mb 24,106,415 
2-primeths p3_10000000000.bin ~12 Mb 1,513,371 
3-primeths p4_10000000000.bin ~900 kb 115,127 
4-primeths p5_10000000000.bin ~86 kb 10,883 
5-primeths p6_10000000000.bin ~11 kb 1,323 
6-primeths p7_10000000000.bin ~2 kb 216 
7-primeths p8_10000000000.bin ~1 kb 47 

 

For every ( ),a b  pair with a b≥ ,  the soft verified each ( )a b
x xP P>  from the intersection (less dense) 

set   ( )* 2,2 6a m℘ ∩ ≥  (starting from the x
aP  closest to 2 1m−  in descending order): it then verified 

if  the difference ( )2 x
am P−  is an element in the (more) dense set *b℘  by using binary section method.  

 

The soft computed each value of ( ),f a b  (with the additional condition a b
x yP P≠ ⇔   a b

x yP P>  in 

at least one Goldbach partition for any ( ),m f a b> , with 2a b
x yP P m+ = ).  

 

The computing time for determining and verifying ( )2,1f = 1 765 126 and 

( )2,2f = 161 352 166 was about 30 hours in total. The computing time for determining and verifying 

( )3,0f = 125 771, ( )4,0f = 6 204 163  and ( )5,0f = 260 535 479 was also about 30 

hours for each value. The computing time for determining and verifying ( ) =f 3,1 32 050 472 was a 

couple of days: no exceptions found between ( )2 ⋅ f 3,1  and 102 10m =  so that ( )f 3,1  may be a 

veritable last exception of VBGC[3,1]. 
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