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Abstract 
 

This study is concerned with comparing the E-Bayesian and Bayesian methods for estimating the shape 
parameters of two-component mixture of inverse Lomax distribution based on type-i censored data. 
Based on the squared error loss (SELF), minimum expected loss (MELF), Degroot loss (DLF), 
precautionary loss (PLF), LINEX loss (LLF) and entropy loss (ELF) functions, formulas of E-Bayesian 
and Bayesian estimations are given. These estimates are derived based on a conjugate gamma prior and 
uniform hyperprior distributions. Comparisons among all estimates are performed in terms of absolute 
bias (ABias) and mean square error (MSE) via Monte Carlo simulation. Numerical computations showed 
that E-Bayesian estimates are more efficient than the corresponding Bayesian estimates. 
 

 
Keywords: Bayesian estimates; E-Bayesian estimates; inverse Lomax distribution; loss functions; mixture 

models. 
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1 Introduction 
 
Mixture models play a vital role in different applications such as cluster analysis, medicine, psychology, life 
testing and reliability analysis. A finite mixture of some probability distributions is advised to study a 
population that contain a number of subpopulations mixing in unknown proportions. Many statisticians have 
studied the mixture models for probability distributions; such as, Saleem et al. [1] introduced a Bayesian 
framework of two-component mixture of power function distribution. Kazmi et al. [2] constructed a 
Bayesian inference of two-component mixture of Maxwell distribution. Noor and Aslam [3] presented a 
Bayesian estimation of the inverse Weibull mixture model. Sultane et al. [4] discussed a Bayesian estimation 
of three-component mixture of Gumbel type-ii distribution. 
 
The E-Bayesian estimation is a new method of estimation first pioneered by Han [5]. Han [6] derived the E-
Bayesian and hierarchical Bayesian estimates of the reliability parameter of the exponential distribution 
under type-i censoring and by considering the quadratic loss function (QLF). Yin and Liu [7] obtained the E-
Bayesian and hierarchical Bayesian estimates for the unknown reliability parameter of the geometric 
distribution based on scaled squared loss function (SSELF) in complete samples. Jaheen and Okasha [8] 
compared the Bayesian and E-Bayesian estimates for the parameters and reliability function of the Burr-xii 
distribution based on type-ii censoring and by considering the SELF and LLF. Azimi et al. [9] estimated the 
parameter and reliability function of the generalized half Logistic distribution by using the Bayesian and E-
Bayesian methods under progressively type-ii censoring and by considering the SELF and LLF. Javadkani et 
al. [10] used the Bayesian, empirical Bayesian and E-Bayesian methods for estimating the unknown shape 
parameter and the reliability function of the two parameter bathtub-shaped lifetime distribution based on 
progressively first-failure-censored samples and by considering the MELF and LLF. Reyad and Othman [11] 
derived the Bayesian and E-Bayesian estimates for the shape parameter of the Gumbel type-ii distribution 
under type-ii censoring and by using SELF, LLF, DLF, QLF and MELF. Reyad and Othman [12] obtained 
the E-Bayesian and Bayesian estimates for the Kumaraswamy distribution under type-ii censored data and 
by using different symmetric and asymmetric loss functions. Reyad et al. [13] compared the E-Bayesian, 
hierarchical Bayesian, Bayesian and empirical Bayesian estimates of shape parameter and hazard function 
corresponding to the Gompertz distribution base on type-ii censoring and by using SELF, QLF, ELF and 
LLF. Reyad et al. [14] discussed the QE-Bayesian, quasi-Bayesian, quasi-hierarchical Bayesian and quasi-
empirical Bayesian estimates for the scale parameter of the Erlang distribution under different loss functions 
in complete samples. Reyad et al. [15] compared the QE-Bayesian and E-Bayesian approaches for 
estimating scale parameter of the Frechet distribution based SELF, ELF, weighted balanced loss function 
(WBLF) and MELF in complete samples. Reyad et al. [16] compared the E-Bayesian and hierarchical 
Bayesian estimates of the scale parameter corresponding to the inverse Weibull distribution based on dual 
generalized order statistics based on various loss functions. 
 
This paper aims to compare the E-Bayesian and Bayesian estimates of the shape parameters of two-
component mixture of inverse Lomax distribution based on type-i censored data and different loss functions. 
A Monte Carlo simulation is used to assess the performance of all resulting estimates in terms of ABias and 
MSE. 
 
The layout of the paper is organized as follow: In Section 2, the two-component mixture of inverse Lomax 
distribution is defined. In Section 3, the likelihood function under type-i censored is obtained. In Section 4, 

the Bayesian estimates of 1
  and 2

  under SELF, MELF, DLF, PLF,LLF and ELF are derived. In Section 

5, the E-Bayesian estimates of 1  and 2  based on SELF, MELF, DLF, PLF,LLF and ELF are investigated. 

In Section 6, a Monte Carlo simulation is conducted to compare the efficiency of the resulting estimates. 
Some concluding remarks have been given in the last Section. 
 

2 The Two-component Mixture of Inverse Lomax Distribution  
 
The inverse Lomax distribution has probability density function (pdf) given by 
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where  and   are the shape and scale parameters respectively. 

 
A density function for mixture of two components densities with unknown mixing weight p  is defined as 

follows: 
 

1 2( ) ( ) (1 ) ( ), 0 1.f x p f x p f x p                                                                       (2) 

 
Using (1) in (2), then the pdf of mixture of two density inverse Lomax is given by 
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The distribution function (cdf) corresponding to (3) is   
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3 The Sampling and Likelihood Function 
 
Suppose n  units from two-component mixture of inverse Lomax distributions are used in a life testing 
experiment with a fixed test termination time T . Let r  units out of n  are failed until fixed test termination 

time T  and the remaining ( )n r units are still working. Let 1
r  and 2

r  units out of r  units corresponding to 

subpopulation-I and subpopulation-II respectively such that 1 2r r r  . Assume also that ,0k kx x T    be 

the failure time of the thk  unit belonging to the th  subpopulation, where 1,2  and  1,2,..., .k r   (see 

Sultane et al. [4] page.288). The likelihood function in this case is given by 
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                                          (5) 

 
Substituting from (3) and (4) in (5) and after some manipulations, we obtain 
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Suppose 1 2,  and p  are known, then the likelihood function is reduced to 
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where, 
1
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4 Bayesian Estimation 
 
In this section, we will obtain the Bayesian estimates of the shape parameters 1

  and 2
  of two-component 

mixture of inverse Lomax distribution by considering SELF, MELF, DLF, PLF, LLF and ELF.  
 

Suppose that 
1

  and 2
  have conjugated gamma prior distributions with pdfs given by  
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                                                 (7) 

and 
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                                                (8) 

Then, the joint posterior distribution of 1
  and 2

  can be obtained by combining (6), (7) and (8) to be 
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where, 1 1 2 2
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The marginal posterior distributions of 1
  and 2 can be obtained from (9) to be  
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4.1 Bayesian estimation under SELF 
 
Mood et al. [17] introduced the SELF as follows: 
 

             
2

1
ˆ ˆ( , ) ( ) , 0L a a     

 
 
where ̂  is an estimator of   and a  is the scale of the loss function. The scale a  is often taken equal to 
one which has no effect on the Bayesian estimates. This loss function is symmetric in nature. i.e. it gives 

equal importance to both over and under estimation. The Bayesian estimates of ( 1,2)i i   based on SELF 

denoted as ˆ ( 1,2)
iBS

i  can be obtained as  
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where ( 1,2)
ihE i   indicated to the expectation of the posterior distributions. We can obtain ˆ ( 1,2)
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using (10) and (11) in (12) respectively to be 
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4.2 Bayesian estimation under MELF 
 
The MELF is suggested by Tummala and Sathe [18] as  
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The Bayesian estimates of ( 1,2)i i   under MELF denoted as ˆ ( 1,2)iBM i  can be calculated from 
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We can obtain ˆ ( 1,2)
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4.3 Bayesian estimation under DLF 
 
Degroot [19] defined the DLF as 
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The Bayesian estimates of ( 1,2)i i   based on DLF denoted as ˆ ( 1,2)iBD i  can be derived from 
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We can get ˆ ( 1,2)iBD i   by using (10) and (11) in (18) respectively to be 
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4.4 Bayesian estimation under PLF 
 
The PLF is proposed by Norstorm [20] as 
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This loss function is approaches infinitely near the origin to prevent underestimation, thus giving 
conservative estimators, especially when low failure rates are being estimated. These estimates are very 
useful when underestimation may lead to serious consequences.  
 

The Bayesian estimates of ( 1,2)
i

i   based on PLF denoted as ˆ ( 1,2)
iBP

i  can be obtained as     
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4.5 Bayesian estimation under LLF 
 
Zellner [21] represented the LLF as  
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with two parameters 0, 0,m w   where m  is the scale of the loss function and w  determines its shape. 

Without loss of generality, we assume 1m  . The Bayesian estimates of ( 1,2)
i

i   relative to LLF denoted 

as ˆ ( 1,2)iBL i  can be obtained as  
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4.6 Bayesian estimation under ELF 
 
Dey et al. [22] used the ELF of the form 
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The Bayesian estimates of ( 1,2)i i   based on ELF denoted as ˆ ( 1,2)iBE i  can be get from  
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5 E-Bayesian Estimation  
 
In this section, we will derive the E-Bayesian estimates of the shape parameters 1  and 2  of two-

component mixture of inverse Lomax distribution based on SELF, MELF, DLF, PLF,LLF and ELF.  
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According to Han [23], the hyperparameters ( 1,2)ia i 
 
and ( 1,2)ib i   must be selected to guarantee 

( , ), 1,2i i i ig a b i 
 
given in (7) and (8) are decreasing functions of ( 1,2)i i  . The derivative of 
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with respect to ( 1,2)i i   are given below 
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independent with bivariate density functions 
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Consequently, the E-Bayesian estimates of ( 1,2)i i   can be obtained from 
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where ( 1,2,...,6)
j

E j   stands for the expectation of the bivariate hyperprior distributions and ˆ ( , )iB i ia b  are 

the Bayesian estimates of ( 1,2)i i   based on SELF, MELF, DLF, PLF,LLF and ELF.  
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5.1 E-Bayesian estimation under SELF 
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( 1) ( ) ( 1)1 1
ˆ ,

( ) ( )
EBS

n r k kc

r a r a
k m

n r k r a r a
db da

k mc z b A b B




  
 

            
                

                             (42) 

 
and 
 

             

2
1 2 2

2 3 2 2 22
1 1 2 2

2 1 2

1
1

10 0
0 0

( 1) ( ) ( 1)2 1
ˆ .

( ) ( )
EBS

n r k kc

r a r a
k m

n r k r a r a
b db da

k mc z b A b B




  
 

            
                

                            (43) 

 

5.2 E-Bayesian estimation under MELF 
 
We can derive the E-Bayesian estimate of 1

  relative to MELF based on 1 1 1
( , )a b  which is denoted as 

1 1
ˆ

EBM  by using (16) and (31) in (37) to be 

 

              

2 2 1 1

2 2 1 1
1 2 1

1 1 1 12

1 2 2 1 1

2 2 1 1
2 1

11
0 0

0 0

2
0 0

( 1) ( ) ( 1)

( ) ( )2
ˆ ( )

( 1) ( ) ( 2)

( ) ( )

EBM

n r k k

r a r ac
k m
n r k k

r a r a
k m

n r k r a r a

k m b B b A
c b

c n r k r a r a

k m b B b A





  
 


  
 

         
   

      
    

           
       


 


1 1

.db da                       (44) 
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Also, we can get the E-Bayesian estimates of 1  relative to MELF based on 2 1 1( , )a b and 3 1 1( , )a b  which 

are denoted as 
1 2

ˆ
EBM

  and 
1 3

ˆ
EBM

 by using (16), (32) in (37) and (16), (33) in (37) respectively to be 

 

             

2 2 1 1

2 2 1 1
1 2 1

1 2 1 1

1 2 2 1 1

2 2 1 1
2 1

11
0 0

0 0

2
0 0

( 1) ( ) ( 1)

( ) ( )1
ˆ ,

( 1) ( ) ( 2)

( ) ( )

EBM

n r k k

r a r ac
k m
n r k k

r a r a
k m

n r k r a r a

k m b B b A
db da

c n r k r a r a

k m b B b A





  
 


  
 

         
   

      
    

           
       


 


                                   (45) 

 

and 

 

              

2 2 1 1

2 2 1 1
2 1

1 3 2

1 2 2 1 1

2 2 1 1
2 1

1
0 0

2
0 0

( 1) ( ) ( 1)1

( ) ( )2
ˆ

( 1) ( ) ( 2)1

( ) ( )

EBM

n r k k

r a r a
k m
n r k k

r a r a
k m

n r k r a r a

k mz b B b A

c n r k r a r a

k mz b B b A





  
 


  
 

          
    

       
    

           
          





1

1 1 1

1

0 0
.

c
b db da




                           (46) 

 

Moreover, we can calculate the E-Bayesian estimates 2
  relative to MELF based on 

2 2
( , ), 4,5,6

j
a b j   

which are denoted as 
2

ˆ , 1, 2,3EBM    by using (17), (34) in (37), (17), (35), in (37) and (17), (36) in (37) 

respectively to be 

 

              

1 1 2 2

1 1 2 2
2 1 2

2 1 2 22

2 1 1 2 2

1 1 2 2
1 2

11
0 0

0 0

2
0 0

( 1) ( ) ( 1)

( ) ( )2
ˆ ( )

( 1) ( ) ( 2)

( ) ( )

EBM

n r k k

r a r ac
k m
n r k k

r a r a
k m

n r k r a r a

k m b A b B
c b

c n r k r a r a

k m b A b B





  
 


  
 

         
   

      
    

           
       


 


2 2 ,db da                    (47) 

 

              

1 1 2 2

1 1 2 2
2 1 2

2 2 2 2

2 1 1 2 2

1 1 2 2
1 2

11
0 0

0 0

2
0 0

( 1) ( ) ( 1)

( ) ( )1
ˆ ,

( 1) ( ) ( 2)

( ) ( )

EBM

n r k k

r a r ac
k m
n r k k

r a r a
k m

n r k r a r a

k m b A b B
db da

c n r k r a r a

k m b A b B





  
 


  
 

         
   

      
    

           
       


 


                                 (48) 

 

and 

 

             

1 1 2 2

1 1 2 2
2 1 2

2 3 2 22

2 1 1

1 1 2 2
1 2

11
0 0

0 0
2 2

2
0 0

( 1) ( ) ( 1)

( ) ( )2
ˆ

( 1) ( ) ( 2)

( ) ( )

EBM

n r k k

r a r ac
k m
n r k k

r a r a
k m

n r k r a r a

k m b A b B
b db da

c n r k r a r a

k m b A b B





  
 


  
 

         
   

      
    

           
       


 


2 .                              (49) 

 

5.3 E-Bayesian estimation under DLF 
 
The E-Bayesian estimate of 1

  relative to DLF based on 1 1 1
( , )a b  denoted as 

1 1
ˆ

EBD
  can be obtained by 

using (19) and (31) in (37) to be 
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2 2 1 1

2 2 1 1
1 2 1

1 1 1 12

1 2 2 1 1

2 2 1 1
2 1

21
0 0

0 0

1
0 0

( 1) ( ) ( 2)

( ) ( )2
ˆ ( )

( 1) ( ) ( 1)

( ) ( )

EBD

n r k k

r a r ac
k m
n r k k

r a r a
k m

n r k r a r a

k m b B b A
c b

c n r k r a r a

k m b B b A





  
 


  
 

         
   

      
    

           
       


 


1 1

.db da                         (50) 

 

In addition, we can calculate the E-Bayesian estimates of 1
  relative to DLF based on 2 1 1

( , )a b
 
and 

3 1 1
( , )a b  which are denoted as 1 2

ˆ
EBD

  and 1 3
ˆ

EBD


 
by using (19), (32) in (37) and (19), (33) in (37) 

respectively to be 

              

2 2 1 1

2 2 1 1
1 2 1

1 2 1 1

1 2 2 1 1

2 2 1 1
2 1

21
0 0

0 0

1
0 0

( 1) ( ) ( 2)

( ) ( )1
ˆ ,

( 1) ( ) ( 1)

( ) ( )

EBD

n r k k

r a r ac
k m
n r k k

r a r a
k m

n r k r a r a

k m b B b A
db da

c n r k r a r a

k m b B b A





  
 


  
 

         
   

      
    

           
       


 


                                   (51) 

 

and 
 

              

2 2 1 1

2 2 1 1
1 2 1

1 3 1 12

1 2 2 1 1

2 2 1 1
2 1

21
0 0

0 0

1
0 0

( 1) ( ) ( 2)

( ) ( )2
ˆ

( 1) ( ) ( 1)

( ) ( )

EBD

n r k k

r a r ac
k m
n r k k

r a r a
k m

n r k r a r a

k m b B b A
b db da

c n r k r a r a

k m b B b A





  
 


  
 

         
   

      
    

           
       


 


1.                                 (52) 

 

Furthermore, we can derive the E-Bayesian estimates 2
  relative to DLF based on 

2 2
( , ), 4,5,6

j
a b j   

which are denoted as 2
ˆ , 1,2,3EBD    by using (20), (34) in (37), (20), (35), in (37) and (20), (36) in (37) 

respectively to be 
 

              

1 1 2 2

1 1 2 2
2 1 2

2 1 2 22

2 1 1 2 2

1 1 2 2
1 2

21
0 0

0 0

1
0 0

( 1) ( ) ( 2)

( ) ( )2
ˆ ( )

( 1) ( ) ( 1)

( ) ( )

EBD

n r k k

r a r ac
k m
n r k k

r a r a
k m

n r k r a r a

k m b A b B
c b

c n r k r a r a

k m b A b B





  
 


  
 

         
   

      
    

           
       


 


2 2 ,db da                     (53) 

 

              

1 1 2 2

1 1 2 2
2 1 2

2 2 2 2

2 1 1 2 2

1 1 2 2
1 2

21
0 0

0 0

1
0 0

( 1) ( ) ( 2)

( ) ( )1
ˆ ,

( 1) ( ) ( 1)

( ) ( )

EBD

n r k k

r a r ac
k m
n r k k

r a r a
k m

n r k r a r a

k m b A b B
db da

c n r k r a r a

k m b A b B





  
 


  
 

         
   

      
    

           
       


 


                                  (54) 

 

and 
 

              

1 1 2 2

1 1 2 2
2 1 2

2 3 2 22

2 1 1 2 2

1 1 2 2
1 2

21
0 0

0 0

1
0 0

( 1) ( ) ( 2)

( ) ( )2
ˆ

( 1) ( ) ( 1)

( ) ( )

EBD

n r k k

r a r ac
k m
n r k k

r a r a
k m

n r k r a r a

k m b A b B
b db da

c n r k r a r a

k m b A b B





  
 


  
 

         
   

      
    

           
       


 


2 .                               (55) 

 

5.4 E-Bayesian estimation under PLF 
 

The E-Bayesian estimate of 1  relative to PLF based on 1 1 1( , )a b  denoted as 1 1
ˆ

EBP  can be calculated by 

using (22) and (31) in (37) to be 
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1 2

1
2 2 1 1

1 1 1 1 1 12
2 2 1 1

1 2 1

1

20 0
0 0

( 1) ( ) ( 2)2 1
ˆ ( ) .

( ) ( )
EBP

n r k kc

r a r a
k m

n r k r a r a
c b db da

k mc z b B b A




  
 

                               
             (56) 

 

Also, we can get the E-Bayesian estimates of 1  relative to PLF based on 2 1 1( , )a b and 3 1 1( , )a b  which are 

denoted as 1 2
ˆ

EBP
  and 1 3

ˆ
EBP

 by using (22), (32) in (37) and (22), (33) in (37) respectively to be 

 

              

1 2

1
2 2 1 1

1 2 1 1
2 2 1 1

1 2 1

1

20 0
0 0

( 1) ( ) ( 2)1 1
ˆ ,

( ) ( )
EBP

n r k kc

r a r a
k m

n r k r a r a
db da

k mc z b B b A




  
 

                               
                         (57) 

and 
 

              

1 2

1
2 2 1 1

1 3 1 1 12
2 2 1 1

1 2 1

1

20 0
0 0

( 1) ( ) ( 2)2 1
ˆ .

( ) ( )
EBP

n r k kc

r a r a
k m

n r k r a r a
b db da

k mc z b B b A




  
 

                               
                     (58) 

 

Also, we can obtain the E-Bayesian estimates 2
  relative to MELF based on 2 2( , ), 4,5,6j a b j   which are 

denoted as 
2

ˆ , 1, 2,3
EBM

 

  by using (23), (34) in (37), (23), (35), in (37) and (23), (36) in (37) respectively 

to be 
 

             

1 2

2
1 1 2 2

2 1 2 2 2 22
1 1 2 2

2 1 2

1

20 0
0 0

( 1) ( ) ( 2)2 1
ˆ ( ) ,

( ) ( )
EBP

n r k kc

r a r a
k m

n r k r a r a
c b db da

k mc z b A b B




  
 

                               
           (59) 

 

              

1 2

2
1 1 2 2

2 2 2 2
1 1 2 2

2 1 2

1

20 0
0 0

( 1) ( ) ( 2)1 1
ˆ ,

( ) ( )
EBP

n r k kc

r a r a
k m

n r k r a r a
db da

k mc z b A b B




  
 

                               
                      (60) 

 

and 
 

            

1 2

2
1 1 2 2

2 3 2 2 22
1 1 2 2

2 1 2

1

20 0
0 0

( 1) ( ) ( 2)2 1
ˆ .

( ) ( )
EBP

n r k kc

r a r a
k m

n r k r a r a
b db da

k mc z b A b B




  
 

                               
                     (61) 

 

5.5 E-Bayesian estimation under LLF 
 
The E-Bayesian estimate of 1  relative to LLF based on 1 1 1

( , )a b  denoted as 1 1
ˆ

EBL
  can be calculated by 

using (25) and (31) in (37) to be 
 

              

1
2 2 1 1

1 1 1 1 1 12
2 2 1 1

1 2 1

1

0 0
0 0

( 1) ( ) ( )2 1
ˆ ln ( ) .

( ) ( )
EBL

n r k kc

r a r a
k m

n r k r a r a
c b db da

k mwc z b B b A w




 
 

             
                   

         (62) 

 

Similarly, we can get the E-Bayesian estimates of 1  relative to LLF based on 2 1 1
( , )a b and 3 1 1

( , )a b  

which are denoted as 1 2
ˆ

EBL  and 1 3
ˆ

EBL by using (25), (32) in (37) and (25), (33) in (37) respectively to be 

 

              

1
2 2 1 1

1 2 1 1
2 2 1 1

1 2 1

1

0 0
0 0

( 1) ( ) ( )1 1
ˆ ln ,

( ) ( )
EBP

n r k kc

r a r a
k m

n r k r a r a
db da

k mwc z b B b A w




 
 

             
                   

                     (63) 
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and 
 

              

1
2 2 1 1

1 3 1 1 12
2 2 1 1

1 2 1

1

0 0
0 0

( 1) ( ) ( )2 1
ˆ ln .

( ) ( )
EBL

n r k kc

r a r a
k m

n r k r a r a
b db da

k mwc z b B b A w




 
 

             
                   

                  (64) 

 

Furthermore, we can derive the E-Bayesian estimates 2  relative to LLF based on 
2 2

( , ), 4,5,6
j

a b j   

which are denoted as 2
ˆ , 1, 2,3EBL    by using (26), (34) in (37), (26), (35), in (37) and (26), (36) in (37) 

respectively to be 
 

              

2
1 1 2 2

2 1 2 2 2 22
1 1 2 2

2 1

1

0 0
20 0

( 1) ( ) ( )2 1
ˆ ln ( ) ,

( ) ( )
EBL

n r k kc

r a r a
k m

n r k r a r a
c b db da

k mwc z b A b B w




 
 

             
                   

      (65) 

 

              

2
1 1 2 2

2 2 2 2
1 1 2 2

2 1

1

0 0
20 0

( 1) ( ) ( )1 1
ˆ ln ,

( ) ( )
EBL

n r k kc

r a r a
k m

n r k r a r a
db da

k mwc z b A b B w




 
 

             
                   

                   (66) 

 
and 
 

              

2
1 1 2 2

2 3 2 2 22
1 1 2 2

2 1

1

0 0
20 0

( 1) ( ) ( )2 1
ˆ ln .

( ) ( )
EBL

n r k kc

r a r a
k m

n r k r a r a
b db da

k mwc z b A b B w




 
 

             
                   

                 (67) 

 
5.6 E-Bayesian estimation under ELF 
 
We can derive the E-Bayesian estimate of 1  relative to ELF based on 1 1 1( , )a b  which is denoted as 

1 1
ˆ

EBE  

by using (28) and (31) in (37) to be 
 

              

1

1
2 2 1 1

1 1 1 1 1 12
2 2 1 1

1 2

1

10 0
10 0

( 1) ( ) ( 1)2 1
ˆ ( ) .

( ) ( )
EBE

n r k kc

r a r a
k m

n r k r a r a
c b db da

k mc z b B b A





  
 

                               
              (68) 

 

Also, we can get the E-Bayesian estimates of 1  relative to ELF based on 2 1 1( , )a b and 3 1 1( , )a b  which are 

denoted as 1 2
ˆ

EBE
  and 1 3

ˆ
EBE

 by using (28), (32) in (37) and (28), (33) in (37) respectively to be 

 

              

1

1
2 2 1 1

1 2 1 1
2 2 1 1

1 2

1

10 0
10 0

( 1) ( ) ( 1)1 1
ˆ ,

( ) ( )
EBE

n r k kc

r a r a
k m

n r k r a r a
db da

k mc z b B b A





  
 

                               
                         (69) 

 

and 
 

              

1

1
2 2 1 1

1 3 1 1 12
2 2 1 1

1 2 1

1

10 0
0 0

( 1) ( ) ( 1)2 1
ˆ .

( ) ( )
EBE

n r k kc

r a r a
k m

n r k r a r a
b db da

k mc z b B b A





  
 

                               
                       (70) 

 

Moreover, we can calculate the E-Bayesian estimates 2
  relative to ELF based on 

2 2( , ), 4,5,6j a b j   

which are denoted as 2
ˆ , 1,2,3EBE    by using (29), (34) in (37), (29), (35), in (37) and (29), (36) in (37) 

respectively to be 
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1

2
1 1 2 2

2 1 2 2 2 22
1 1 2 2

2 1 2

1

10 0
0 0

( 1) ( ) ( 1)2 1
ˆ ( ) ,

( ) ( )
EBE

n r k kc

r a r a
k m

n r k r a r a
c b db da

k mc z b A b B





  
 

                               
            (71) 

             

1

2
1 1 2 2

2 2 2 2
1 1 2 2

2 1 2

1

10 0
0 0

( 1) ( ) ( 1)1 1
ˆ ,

( ) ( )
EBE

n r k kc

r a r a
k m

n r k r a r a
db da

k mc z b A b B





  
 

                               
                          (72) 

 

and 

 

              

1

2
1 1 2 2

2 3 2 2 22
1 1 2 2

2 1 2

1

10 0
0 0

( 1) ( ) ( 1)2 1
ˆ .

( ) ( )
EBE

n r k kc

r a r a
k m

n r k r a r a
b db da

k mc z b A b B





  
 

                               
                    (73) 

 

6 Monte Carlo Simulation  

 
In this section, a Monte Carlo simulation study is carried out to evaluate the performance of the Bayesian 
and E-Bayesian estimates for the shape parameters associated to the two-component mixture of inverse 
Lomax distributions based on SELF, MELF, DLF, PLF,LLF and ELF described in the preceding sections. 
The simulation structure can be summarized in the following steps: 

 

Step (1): Set the default values (true values) of 1
,

2
,

1
,c

2
,c w

 
and p which are 2, 3, 6, 4, -0.5 and 0.6 

respectively. We considered different sample sizes ( 25, 50, 75n  ) and test termination times (

20, 25T  ) to observe their effect on the resulting estimates  

Step (2): We generate 1
a  and 1

b  from the bivariate uniform hyperprior distributions; 1 1
( , ), 1,2,3

i
a b i   

given in (31), (32) and (33). For given values of 1
a  and 1

b  we generate 
1  from the gamma prior 

distribution; 1 1 1 1
( , )g a b  given in (7).  

Step (3): We generate 2a  and 2b  from the bivariate uniform hyperprior distributions; 2 2( , ), 4,5,6i a b i   

given in (34), (35) and (36). For given values of 2
a  and 2

b  we generate 
2  from the gamma prior 

distribution; 2 2 2 2
( , )g a b  given in (8).  

Step (4): For known values of 1, 2 ,
 and ,p   type-i censored samples are generated from the two-

component mixture of inverse Lomax distributions given in (3).  

Step (5): Calculate the Bayesian and E-Bayesian estimates of the unknown shape parameters associated to 
the two-component mixture of inverse Lomax distributions according to the formulas that have 
been obtained. 

Step (6): We repeated this process 1000 times and compute the absolute bias (ABias) and mean square error 

(MSE) for all estimates for different sample sizes, test termination times and given values of 1
,

2 , 1,c 2 ,c w
 and p   

 

where,  
 

             
ˆ ˆ( ) ,ABias                                               21

ˆ ˆ( ) ( ) .
1000

MSE       

 

and ̂  stands for an estimator of . The simulation results are displayed in Tables (1-6). 
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Table 1. Averaged values of ABias and MSEs (within parenthesis) for the Bayesian and E-Bayesian 

estimates  of 1
  and 2

  based on SELF 

 

T  n  
Bayesian estimation E-Bayesian estimation 

1
ˆ

BS  
2

ˆ
BS 

1
ˆ

EBS 
2

ˆ
EBS 

20 25 
1.1251548 

(1.2725078) 

0.3478656 

(0.1242237) 

0.9718193 

(0.9726478) 

1.0620825 

(1.1409433) 

1.1523457 

(1.3315204) 

0.1855762 

(0.0568182) 

0.1375378 

(0.0279738) 

0.4606518 

(0.2139173) 

20 50 
1.1436133 

(1.313351) 

0.3159202 

(0.1012314) 

1.0192907 

(1.0576375) 

1.0926467 

(1.2029943) 

1.1660026 

(1.3625682) 

0.201444 

(0.051824) 

0.1208053 

(0.0190389) 

0.4430545 

(0.1970497) 

20 75 
1.1508893 

(1.3284307) 

0.3043115 

(0.0934683) 

1.0386734 

(1.0910913) 

1.1048034 

(1.2266897) 

1.1709334 

(1.3731929) 

0.2069095 

(0.0500876) 

0.1149645 

(0.0160597) 

0.4368385 

(0.1912854) 

25 25 
1.1254682 

(1.2733678) 

0.3136946 

(0.100551 

0.9725897 

(0.9735845) 

1.0626527 

(1.1420531) 

1.1527158 

(1.3324659) 

0.2908399 

(0.1013358) 

0.0718313 

(0.011766) 

0.4345025 

(0.1899424) 

25 50 
1.1391387 

(1.3027495) 

0.2831914 

(0.0811617) 

1.0116273 

(1.0414907) 

1.0871175 

(1.1905329) 

1.1626078 

(1.3544282) 

0.3021996 

(0.1000878) 

0.058177 

(0.0067728) 

0.4185536 

(0.1757139) 

25 75 
1.1475446 

(1.3212712) 

0.2707832 

(0.0738659) 

1.0312043 

(1.0777314) 

1.0999021 

(1.216861) 

1.1686254 

(1.3680166) 

0.3098757 

(0.1012243) 

0.0510427 

(0.0046009) 

0.4119611 

(0.1700104) 
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Table 2. Averaged values of ABias and MSEs (within parenthesis) for the Bayesian and E-Bayesian 

estimates  of 1
  and 2

  based on MELF 

 

T  n  
Bayesian Estimation E-Bayesian Estimation 

1
ˆ

BM  
2

ˆ
BM  

1
ˆ

EBM  
2

ˆ
EBM  

20 25 
1.1590825 

(1.3483735) 

0.05158105 

(0.2755131) 

1.1545596 

(1.3382692) 

1.1586736 

(1.3474615) 

1.1627877 

(1.3567005) 

0.490945 

(0.2507415) 

0.5128343 

(0.2723434) 

0.5347237 

(0.2949418) 

20 50 
1.1591772 

(1.3484828) 

0.4048458 

(0.1664493) 

1.1571713 

(1.3439889) 

1.159055 

(1.3482089) 

1.1609388 

(1.3524385) 

0.3887502 

(0.1535719) 

0.4040404 

(0.1657673) 

0.4193306 

(0.1784385) 

20 75 
1.1610162 

(1.3515039) 

0.364147 

(0.1338037) 

1.1597631 

(1.348668) 

1.1609508 

(1.3513557) 

1.1621385 

(1.3540469) 

0.3527433 

(0.1255952) 

0.3639133 

(0.1336271) 

0.3750833 

(0.1419126) 

25 25 
1.1590786 

(1.3485225) 

0.4758405 

(0.2334975) 

1.154598 

(1.338512) 

1.1586791 

(1.3476316) 

1.1627601 

(1.3567963) 

0.4492508 

(0.2088038) 

0.4727732 

(0.2304371) 

0.4962955 

(0.2532032) 

25 50 
1.5550842 

(1.3386662) 

0.3694763 

(0.1383055) 

1.1530095 

(1.3340252) 

1.1549575 

(1.3383827) 

1.1569055 

(1.3427502) 

0.3528017 

(0.1261475) 

0.3686954 

(0.1377032) 

0.3845892 

(0.1497748) 

25 75 
1.1578472 

(1.3446353) 

0.3279392 

(0.1089025) 

1.1565411 

(1.3417038) 

1.1577791 

(1.3444819) 

1.1590141 

(1.3472639) 

0.317063 

(0.1012881) 

0.3285851 

(0.1087598) 

0.3401072 

(0.1165016) 
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Table 3. Averaged values of ABias and MSEs (within parenthesis) for the Bayesian and E-Bayesian 

estimates  of 1
  and 2

  based on DLF 

 

T  n  
Bayesian Estimation E-Bayesian Estimation 

1
ˆ

BD  
2

ˆ
BD  

1
ˆ

EBD  
2

ˆ
EBD  

20 25 
1.1081911 

(1.2355665) 

0.2643344 

(0.071831) 

1.1025896 

(1.223773) 

1.1076987 

(1.2345353) 

1.1128078 

(1.2453715) 

0.222336 

(0.0514825) 

0.2594051 

(0.0691986) 

0.5347237 

(0.0898778) 

20 50 
1.1358313 

(1.2959883) 

0.2715703 

(0.0748633) 

1.1336127 

(1.2911424) 

1.1356997 

(1.2957009) 

1.1377867 

(1.3002711) 

0.2513337 

(0.0642565) 

0.2706486 

(0.0743518) 

0.4193306 

(0.085219) 

20 75 
1.1458259 

(1.3169777) 

0.274444 

(0.0760831) 

1.1444863 

(1.319928) 

1.1457576 

(1.3168253) 

1.1470288 

(1.3196618) 

0.2612538 

(0.0690185) 

0.2742157 

(0.0759554) 

0.3750833 

(0.0832362) 

25 25 
1.1086631 

(1.2367535) 

0.232813 

(0.055489) 

1.1031374 

(1.2250939) 

1.1081852 

(1.2357485) 

1.1132329 

(1.2464729) 

0.1901668 

(0.0376163) 

0.2279455 

(0.0532242) 

0.4962955 

(0.0719177) 

25 50 
1.1311659 

(1.2850024) 

0.2401018 

(0.0584251) 

1.1288699 

(1.2799971) 

1.1310294 

(1.2847048) 

1.1331888 

(1.2894249) 

0.2194882 

(0.0489598) 

0.2392113 

(0.0579929) 

0.3845892 

(0.0678335) 

25 75 
1.1423933 

(1.3096763) 

0.2418008 

(0.0589475) 

1.1409998 

(1.3065918) 

1.1423224 

(1.3095184) 

1.1436442 

(1.3124494) 

0.2283707 

(0.0526371) 

0.2415971 

(0.0588476) 

0.3401072 

(0.06544165) 
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Table 4. Averaged values of ABias and MSEs (within parenthesis) for the Bayesian and E-Bayesian 

estimates  of 1
  and 2

  based on PLF 

 

T  n  
Bayesian Estimation E-Bayesian Estimation 

1
ˆ

BSP  
2

ˆ
BP  

1
ˆ

EBP  
2

ˆ
EBP  

20 25 
1.1168145 

(1.2542624) 

0.3076894 

(0.0971938) 

1.0559847 

(1.1291415) 

1.0998165 

(1.2182513) 

1.1436483 

(1.3125421) 

0.0733373 

(0.0118809) 

0.2414227 

(0.0617631) 

0.4095082 

(0.169157) 

20 50 
1.1397543 

(1.3047242) 

0.2941558 

(0.0877854) 

1.0926237 

(1.2038255) 

1.1270339 

(1.2767693) 

1.161444 

(1.352825) 

0.0860902 

(0.0107086) 

0.2424043 

(0.0605087) 

0.3987183 

(0.1596719) 

20 75 
1.1483716 

(1.322729) 

0.2895584 

(0.0846534) 

1.1064692 

(1.2310002) 

1.1371508 

(1.29761) 

1.1678324 

(1.3665628) 

0.0907405 

(0.010421) 

0.2428101 

(0.0601012) 

0.3948796 

(0.156369) 

25 25 
1.1172041 

(1.2552819) 

0.2746405 

(0.0770608) 

1.0565739 

(1.1303672) 

1.1003027 

(1.2194055) 

1.1440316 

(1.3135512) 

0.0157682 

(0.00472268) 

(0.2001847 

(0.0423828) 

0.3846011 

(0.1488383) 

25 50 
1.1351853 

(1.2939318) 

0.2620126 

(0.0695068) 

1.0867651 

(1.1905379) 

1.1221798 

(1.2654422) 

1.1575946 

(1.3435938) 

0.0312744 

(0.0034017) 

0.2031302 

(0.042508) 

0.374986 

(0.1410799) 

25 75 
1.1449832 

(1.3154987) 

0.2564532 

(0.0662751) 

1.1015223 

(1.2210982) 

1.1333621 

(1.2896515) 

1.1652019 

(1.3607808) 

0.0348152 

(0.0026663) 

0.2027219 

(0.0418391) 

0.3706286 

(0.1376363) 
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Table 5. Averaged values of ABias and MSEs (within parenthesis)  for the Bayesian and E-Bayesian 

estimates of 1
  and 2

  based on LLF 

 

T  n  
Bayesian Estimation E-Bayesian Estimation 

1
ˆ

BL  
2

ˆ
BL  

1
ˆ

EBL  
2

ˆ
EBL  

20 25 
1.1239565 

(1.2699245) 

0.3356365 

(0.1157731) 

0. 5945314 

(0.4218738) 

1.1080333 

(1.2370891) 

1.6215353 

(2.6340558) 

0.4966517 

(0.2604015) 

0.3123854 

(0.0997804) 

1.1214226 

(1.2586466) 

20 50 
1.1431074 

(1.3122354) 

0.3090865 

(0.0969357) 

0.6666425 

(0.4990265) 

1.1399517 

(1.3065727) 

1.6132608 

(2.60689) 

0.5083885 

(0.265215) 

0.325604 

(0.1071234) 

1.1595966 

(1.3449787) 

20 75 
1.150578 

(1.3277331) 

0.2996272 

(0.0906343) 

0.6931828 

(0.5185077) 

1.1510637 

(1.3297983) 

1.6089445 

(2.5918027) 

0.5125692 

(0.2670658) 

0.3306563 

(0.1100683) 

1.1738817 

(1.3781561) 

25 25 
1.1242829 

(1.2708094) 

0.30110985 

(0.092705) 

0.5958344 

(0.4247288) 

1.1086392 

(1.2385696) 

1.621444 

(2.6338947) 

0.5763554 

(0.3408514) 

0.2791523 

(0.0793569) 

1.13466 

(1.2882663) 

25 50 
1.1386153 

(1.3015973) 

0.2761814 

(0.0772211) 

0.6524599 

(0.4764771) 

1.1347959 

(1.2943385) 

1.6171319 

(2.6191054) 

0.5839615 

(0.3455959) 

0.2940956 

(0.0872607) 

1.1721527 

(1.3741723) 

25 75 
1.1472208 

(1.3205503) 

0.2659891 

(0.0712873) 

0.6827158 

(0.5092838) 

1.1473407 

(1.3219012) 

1.6119656 

(2.6019564) 

0.5895438 

(0.3502603) 

0.2986451 

(0.0896472) 

1.1868341 

(1.4086822) 
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Table 6. Averaged values of ABias and MSEs (within parenthesis) for the Bayesian and E-Bayesian 

estimates  of 1
  and 2

  based on ELF 

 

T  n  
Bayesian Estimation E-Bayesian Estimation 

1
ˆ

BE  
2

ˆ
BE  

1
ˆ

EBE  
2

ˆ
EBE  

20 25 
1.1421186 

(1.3101102) 
0.4316973 

(0.1920583) 

1.653216 
(1.13608278) 

1.0940391 
(1.2055299) 
1.0227566 

(1.0636397) 

0.4841919 
(0.2397864) 
0.3282017 

(0.1190169) 
0.4606518 

(0.0444269) 

20 50 
1.1513952 

(1.3308492) 
0.3603461 
(0.131753) 

1.1711135 
(1.3741822) 
1.1053199 
(1.229309) 
1.0395262 

(1.0957042) 

0.4149878 
(0.1761082) 

0.211481 
(0.0501303) 
0.4430545 

(0.0144933) 

20 75 
1.1559528 

(1.3399395) 
0.3342128 

(0.1127065) 

1.1736995 
(1.3795085) 
1.1119459 

(1.2418104) 
1.0501922 

(1.1135391) 

0.3912057 
(0.1552097) 
0.1631204 

(0.0298157) 
0.4368385 

(0.0207314) 

25 25 
1.1242829 

(1.2708094) 
0.3010985 
(0.092705) 

0.5958344 
(0.4247228) 
1.1086392 

(1.2385696) 
1.621444 

(2.6338947) 

0.5763554 
(0.3408514) 
0.2791523 

(0.0793569) 
1.1346613 

(1.2882663) 

25 50 
1.1471115 

(1.3206374) 
0.3263166 

(0.1077853) 

1.1679185 
(1.3664849) 
1.1002942 

(1.2178141) 
1.0326695 

(1.0808721) 

0.388777 
(0.1534214) 
0.1528731 

(0.0276202) 
0.4185536 

(0.0273496) 

25 75 
1.1526959 

(1.3329242) 
0.2997813 

(0.0905166) 

1.1715325 
(1.3746802) 
1.1074887 

(1.2327524) 
1.0434449 

(1.1011727) 

0.3610423 
(0.1324246) 
0.1001328 

(0.0123959) 
0.4119611 

(0.0512643) 
 

7 Conclusion Remarks 
 
The E-Bayesian and Bayesian estimates are compared for the shape parameters of two-component mixture 
of inverse Lomax distribution based on type-i censoring. Numerical computations showed that E-Bayesian 

estimates are performing better than Bayesian estimates for 1
  under different sample sizes, test termination  

times and various loss functions except for 25T   and 75n   under MELF where Bayesian estimates are the 

best. Moreover, the E-Bayesian estimates for 2
  are more efficient than Bayesian estimates in most cases 

except for LLF where the Bayesian estimates are the best. Furthermore, comparing the E-Bayesian estimates 

under different loss functions, we can conclude that the E-Bayesian estimates for 1
  based on LLF are the 
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most efficient, whereas the E-Bayesian estimates based on MELF are the least efficient in all cases. On the 

other hand, the E-Bayesian estimates for 2
  based on SELF are the best, whereas the E-Bayesian estimates 

based on LLF are the lowest in all cases. The ABias and MSE of all the resulting estimates decreases as the 
sample sizes and test termination times increases.  
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