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ABSTRACT 
 

Aim: Coal fly ash (CFA) is a major contributor to ambient air pollution in China and India, but it is 
trapped and sequestered in Western nations. Members of the public chronically exposed to 
aerosolized CFA are likely to have an increased incidence of respiratory disease, including lung 
cancer. Our objective is to review the multiple carcinogenic constituents of aerosolized coal fly ash 
in connection with their potentiality to cause lung cancer. 
Methods: We review the interdisciplinary scientific and medical literature. 
Results: CFA contains a variety of potentially carcinogenic substances including aluminosilicates, 
an iron oxide-containing magnetic fraction, several toxic trace elements, nanoparticles, and alpha-
particle-emitting radionuclides.  Silica, arsenic, cadmium, and hexavalent chromium are found in 
CFA and all have been associated with increased lung cancer risk.  Radical generation catalyzed 
by transition metals associated with the particulate matter in CFA can result in a cascade of cell 
signaling, transcription factor activation, and mediator release. Ferric iron in the aluminum-silicate 
glass phase of CFA is a source of bioavailable iron. There is emerging evidence that reactive iron 
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induces cancer stem cells and aggressive phenotypes in lung cancer. The potential pulmonary 
toxicity and carcinogenicity of aerosolized CFA is suggested by studies of asbestos, a fibrous 
silicate that also contains iron oxide. CFA contains an abundance of ultrafine particles and 
nanoparticles, including magnetite (Fe3O4). These tiny particles are toxic to lung cells, capable of 
producing oxidative stress, cytotoxicity, and genotoxicity. Radioactive elements are concentrated in 
CFA. CFA can settle deep in the lungs where its alpha-particle-emitting radionuclides pose 
significant risk factors for lung cancer. 
Conclusion: Considering the well-known and manifold toxicities of CFA, the public should be 
made aware of the potential risks for lung cancer and severe respiratory disease posed by 
aerosolized CFA including its use in climate alteration activities. 
 

 
Keywords: Aerosols; coal fly ash; climate intervention; geoengineering; particulate air pollution; 

oncology; magnetite; nanoparticles. 
 
1. INTRODUCTION  
 
When coal is burned by electric utilities, about 
10% remains as ash. The heavy ash settles, 
while the light coal fly ash (CFA) condenses and 
accumulates in the flue gases. In India and China 
CFA is usually allowed to exit smokestacks, but 
in Western nations it is trapped and sequestered 
for public health reasons. The public is 
nevertheless being exposed to aerosolized CFA, 
not only through inefficient trapping, especially in 
the 0.1-1 µm range [1,2], and windblown CFA-
rich dust from dumps [3], but also as workers in 
the CFA industry [4]. Epidemiological evidence 
indicates that aerosolized particulate pollution in 
the size range ≤ 2.5 µm is associated with 
numerous risks to health including, but not 
limited to, lung cancer [5]. Forensic evidence is 
consistent with jet-sprayed CFA being widely 
used for tropospheric climate alteration activities 
in North America and Europe [6,7]. Significant 
information is found throughout the scientific 
literature bearing on the health risks of CFA. The 
purpose of this Review is to bring together this 
information, specifically calling attention to the 
lung cancer risk of aerosolized CFA. The 
resulting implications pertain to human exposure 
in general including, for example, workers 
engaged in cleaning up CFA spills [8]. As a 
consequence of undisclosed tropospheric climate 
alteration activities, pilots and flight crews may 
be subjected to more intense exposure than 
general populations on the ground. 
 

2. METHODS 
 
The scientific literature is rich in information 
pertaining to the subject of this review. This 
information, however, is fragmented and 
scattered among many different journals. We 
review the interdisciplinary scientific and medical 
literature to bring forth and to connect logically 

the various and diverse information that bears on 
the potentiality of lung cancer caused by CFA. 
 

3. RESULTS AND DISCUSSION 
 
CFA, a major by-product of coal-burning by 
electric utilities, is formed by condensing and 
accumulating in the hot flue gases, usually as 
spheres typically ranging in size from 0.01 – 50 
µm in diameter. Considered too toxic to be 
allowed to exit smokestacks, CFA in Western 
nations is collected by electrostatic precipitation 
and sequestered. CFA, one of the world’s largest 
industrial waste-streams, forms in just the size 
range needed for aerosol spraying with limited 
processing.  
 
The main elements in CFA are oxides of silicon, 
aluminum, iron, and calcium, with lesser amounts 
of magnesium, sulfur, sodium and potassium [9]. 
Primary components of CFA are aluminum 
silicates and an iron-bearing fraction that 
includes magnetite, Fe3O4 [10]. Among the trace 
elements in CFA are the following: arsenic, 
barium, beryllium, cadmium, chromium, lead, 
manganese, nickel, phosphorus, selenium, 
thallium, titanium and zinc [10]. The radioactive 
nuclides uranium, 235U and 238U, thorium, 232Th, 
and potassium, 

40
K, are present in CFA as well 

as their daughter products, which includes 
radioactive lead, 

210
Pb, radium, 

226
Ra, and radon, 

222
Rn [11-13]. CFA also contains particles of 

unconsumed carbon some of which are identified 
as soot [14,15]. Small amounts of organic 
molecules found in CFA include the polycyclic 
hydrocarbons like benzopyrene which is known 
to be carcinogenic [16]. 
 
Aerosolized CFA for climate alteration constitutes 
one form of deliberate air pollution; there is now 
abundant evidence that ambient air pollution 
contributes to the growing global burden of 
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respiratory disease and lung cancer [17,18]. 
Long term, cumulative exposure to fine 
particulate pollution in the U.S. is associated with 
lung cancer and cardiopulmonary mortality [19]. 
A recent study documents a 31% increase in 
incident lung adenocarcinoma associated with 
increasing ambient PM2.5 air pollution among 
nonsmokers [20]. Climate intervention projects 
utilizing CFA constitute a covert, insidious, and 
nearly global form of PM2.5 air pollution. Chronic 
exposure to aerosolized CFA, emplaced in the 
atmosphere for climate intervention, may be an 
important, yet unrecognized, environmental risk 
factor for development of lung cancer. 

 
Lung cancer is the leading cause of cancer 
deaths worldwide, and it is among the most 
common occupation-related cancers [21]. Silica, 
one of the main components of CFA [9], has long 
been known to cause silicosis and it may also 
predispose to lung cancer. Recent studies have 
shown an excess lung mortality in silica-exposed 
workers who do not have silicosis and have 
never smoked [22]. CFA contains known 
carcinogens such as arsenic, cadmium, and 
chromium, the latter of which is about 10% 
hexavalent [23]. Inorganic arsenic is unique in 
that it has been established to cause lung cancer 
with exposure through both ingestion and 
inhalation [24]. Although earlier investigations 
showing an association of cadmium with lung 
cancer were confounded by the presence of 
arsenic, a more recent study supports an 
independent risk of cadmium in lung cancer 
mortality [25]. Inhalation of hexavalent chromium 
is associated with increased lung cancer risk in 
several industries, most notably chromate 
production [26]. 
 
Iron is a ubiquitous component of CFA; all CFA 
samples examined in one study [27] were 
comprised mostly of amorphous aluminosilicate 
spheres with a lesser quantity of iron-rich 
spheres. Most of the iron-rich spheres contained 
two components: Iron oxide and amorphous 
aluminosilicate. Mössbauer spectroscopy 
indicates that ferric iron in the aluminosilicate 
glass phase of CFA is a source of bioavailable 
iron [28]. Differences in iron mobilization in 
pollution particles are correlated with minerology, 
chemical speciation, and morphology of the 
particles. In size-fractionated fly ash, the smallest 
particles produce higher amounts of mobilized 
iron from a given source [29]. 
 
Elemental iron is essential for cell growth and 
homeostasis, but through redox cycling it can be 

toxic to cells and tissue. This transition metal is 
carcinogenic due to its catalytic effect on the 
formation of hydroxyl radicals, suppression of 
host defense cells, and its promotion of cancer 
cell proliferation. Iron-catalyzed oxidative stress 
causes lipid peroxidation, protein modification, 
and DNA damage with consequent promotion of 
mutagenesis [30,31]. In both animals and man, 
primary neoplasms develop at body sites of 
excessive iron deposits. The invaded host 
attempts to withhold iron from cancer cells via 
sequestration of the metal in newly formed 
ferritin, the main storage form of iron in the body. 
Quantitative evaluation of body iron and of iron-
storing proteins like ferritin have prognostic value 
in cancer patients, including those with lung 
cancer [32]. 

 
Both epidemiologic and laboratory studies have 
demonstrated that iron excess or imbalance is 
associated with the tumorigenesis of lung cancer 
and the growth of lung cancer cells. Pathways of 
iron uptake, storage, efflux, and regulation are all 
disturbed in cancer, suggesting that 
reprogramming of iron metabolism is a key 
feature of tumor cell survival [33]. Multiple cell 
culture, animal models, and epidemiological 
studies implicate iron in the development of non-
small cell lung cancer [31]. A recent study 
provides compelling evidence that iron              
induces cancer stem cells and aggressive 
phenotypes in human lung cancer cells [34]. Iron 
is one of the most reactive ions in air           
pollution produced by CFA. Iron participates in 
the anti-apoptotic effect of particulate matter and 
since resisting cell death is a hallmark of cancer 
cell, this finding may relate to the development of 
lung cancer after atmospheric pollution exposure 
[35]. 
 
There is a growing concern about radioactive 
elements in coal products. These agents           
occur naturally in coal but during combustion 
they become concentrated in coal ash residues. 
Fly ash and bottom ash contain 5-10 times more 
natural radionuclides than feed coal, but they are 
most concentrated in CFA [12]. Uranium,         
thorium and potassium consist in whole or in part 
of radionuclides with extremely long                            
half-lives. Although the human body                  
contains much potassium, only 0.012% of that is 
the radionuclide 40K, which decays both by 
electron capture and beta decay. Uranium and              
thorium, on the other hand, are not                   
naturally indigenous in human tissue, and decay 
through a series of daughter products                  
emitting 6-8 highly-damaging alpha               
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particles in the process to become non-
radioactive lead. The activity concentrations of 
some radioactive nuclides in CFA are shown in 
Table 1. 
 

Table 1. Activity concentrations of some 
radioactive nuclides in coal fly ash (CFA) in 

samples from Uttar Pradesh and West Bengal 
(India) and Kentucky (USA) determined by 
gamma radiation spectrometry. Units are 
Becquerel per kilogram which is equal to 

16.66 times the number of disintegrations per 
minute per gram. After three 

222
Rn half-lives 

(11.4 days) in which secular equilibrium is 
established, the activity concentrations of 

222
Rn and 

226
Ra become nearly equal [36] 

 
CFA Activity concentration Reference 
Nuclide Bq/kg  
226

Ra 118.6 ± 7.4 [37] 
222Rn 118.6 ± 7.4 [38] 
210Pb  241.7 ± 16.3 [38]  
232

Th  147.3 ± 3.4 
112.9 ± 0.3 

[37] 
[11] 

238
U  99.3 ± 1.3 [11] 

40K  352.0 ± 4.5 
308.9 ± 2.5 

[37] 
[11] 

 
The most abundant radionuclide in CFA is 
thorium, present exclusively as 

232
Th. Thorium 

produces higher radiation levels than uranium, 
235

U and 
238

U being the mainradionuclides. Lung 
cancer mortality is known to be higher than in 
controls for both thorium miners [39] and uranium 
miners [40], and is assumed to result from radon 
exposure: 222Rn from the 238U decay series. 
Radon, 

222
Rn, exposure from 

238
U in rocks may 

be the second most common cause of lung 

cancer and the first risk factor in             
nonsmokers [41]. 
 

The small grain size of CFA, extending into the 
nanoparticulate range, means that when inhaled 
these particles become trapped in terminal 
airways and alveoli where they remain for long 
periods of time. Fission track studies of CFA 
glassy particles demonstrate that uranium is 
distributed more-or-less uniformly on their 
surfaces [38]. Alpha particles emitted from those 
surfaces can damage lung tissue and as 
evidenced [42] cause lung cancer. Typically, 
alpha-emitting radon and lead radionuclides with 
comparatively long half-lives are mentioned as 
risk factors, for example, 

222
Rn and 

210
Pb [43]. 

But tiny aerosolized CFA particles which are 
inhaled and settle deep in the lungs potentially 
cause cancer both from short- and long-lived 
alpha particle emitters (Table 2). 
 

Previous pulmonary toxicology studies of non-
fractionated CFA reported that coarse particles 
were relatively inert with minimal respiratory 
effects in animal studies [45]. However, more 
recent studies of the effects of size fractionated 
CFA particles show significant pulmonary toxicity 
of ultrafine and CFA nanoparticles (CFA-NP’s) 
[46]. The smaller the size of the particle, the 
greater its surface area is to its volume ratio, and 
the higher its chemical and biological             
reactivity [47]. Ultrafine particles and 
nanoparticles are small enough to enter the  
body  transdermally [48,49]. Beyond shape and 
size, increasing attention is be paid to            
particle/fiber chemistry as a determinant of 
variables such as dissolution behavior,                        
ion exchange, sorption properties and              
surface reactivity [50,51]. 

 

Table 2. Alpha particle-emitting nuclides present in coal fly ash (CFA). Percent isotopic 
abundances of parent nuclides are indicated. Data from [44] 

 

Alpha particle emitting CFA 
nuclides 

Uranium Thorium 
238U (99.2746%) 235U (0.720%) 232Th (100%) 

Uranium 
238

U  
234

U 
235

U  

Protactinium  231Pa  

Thorium 
230

Th 
227

Th 
232

Th  
228

Th 

Actinium  
227

Ac  

Radium 226Ra 223Ra 224Ra 

Francium  
223

Fr  

Radon 
222

Rn 
223

Rn 
220

Rn 

Astatine 218At 219At  215At  

Polonium 218Po  214Po  210Po 215Po  211Po 216Po  212Po 

Bismuth 
214

Bi  
210

Bi 
211

Bi 
212

Bi 

Lead 210Pb   
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Use of ultrafine grain sizes of aerosolized CFA 
particulates for climate alteration is 
advantageous for increasing residence time in 
the convecting troposphere, but this activity 
increases the respiratory risks. Ultrafine (0.1-1 
µm) particles and nanometer-sized particles 
(<100 nm) are both found in CFA. The key to 
understanding the toxicity of nanoparticles is that 
their minute size, smaller than cells and cellular 
organelles, allows them to penetrate these 
biological structures, disrupting their normal 
function. Examples of toxic effects include tissue 
inflammation, and altered cellular redox balance 
toward oxidation, causing abnormal function or 
cell death [52]. CFA nanoparticles with surficial 
toxic heavy metals can act as cellular and DNA 
toxicant, capable of inducing inflammation, 
oxidative stress, DNA damage and cell death 
[47]. 
 
Exposures to particles and fibers are associated 
with many lung diseases including lung cancers, 
mesothelioma, chronic bronchitis, emphysema, 
pneumonitis, and pneumoconiosis. All particles 
and fibers have the capacity to present an 
oxidative stress to the lung [53], and among the 
characteristics shared by all of these particles 
introduced into the lung is the creation of a solid-
liquid interface into the lower respiratory tract. 
Free radical production by fibers and particles in 
coordination with transition metals with two 
stable valence states can be observed at this 
solid-liquid interface [53-55]. For example, the 
same divalent character of iron that plays an 
important biologic role may also cause toxicity by 
sustaining oxidative conditions [56]. Radical 
generation catalyzed by metals associated with 
fibers and particles can result in a cascade of cell 
signaling, transcription factor activation, and 
mediator release [57-59]. Clinical manifestations 
of this process can present as inflammatory, 
fibrotic, and neoplastic disease. 
 
Transmission electron microscopy investigations 
reveal an abundance of magnetite nanoparticles 
(NP’s) among ultrafine CFA particles [60]. There 
are a growing number of reports of pulmonary 
toxicity from inhalation of magnetite, including 
nanoparticulate magnetite. Four different size 
fractions of magnetite on human alveolar 
epithelial cells showed adverse effects including 
cytotoxicity, genotoxicity, and increased 
production of reactive oxygen species [61]. Lung 
epithelial cells, treated with various 
concentrations of magnetic nanoparticles, 
showed that magnetite-treated cells induce 
oxidative stress, deplete antioxidant levels, and 

affect the apoptotic pathway [62]. Note the 
commonality: Iron oxide is a component of air 
pollution, CFA, and asbestos [56,63,64]; 
magnetite (Fe3O4) is even found in cigarette 
smoke and ash [65]. 
 

Titanium-rich nanoparticles (TiO2 NP’s) are also 
found in CFA. Whereas aluminosilicates are 
dominant in the micrometer size range in CFA, 
large numbers of iron and titanium particles in 
the ultrafine size range are present. TEM 
analysis of CFA reveals both titanium and iron 
oxide nanoparticles which exhibit highly 
crystalline characteristics [66]. Long term studies 
by method of intratracheal instillation confirm the 
carcinogenicity of submicron titanium oxide 
nanoparticles in rats [67]. There is evidence that 
titanium NP’s can induce cytotoxicity, significant 
DNA damage, and apoptosis in human non-small 
cell lung cancer A549 cells [68]. Bioavailable 
nickel NP's are also found in CFA [69]. Metallic 
nickel and nickel oxide NP's are toxic to human 
lung epithelial cells [70].  
 
Further implications of the pulmonary toxicity and 
potential carcinogenicity of aerosolized CFA are 
suggested by studies of asbestos, a fibrous 
silicate [71].  The presence of transition metals 
like iron in asbestos fibers and the ability of these 
fibers to attract iron from the surrounding 
environment may be key factors for asbestos 
toxicity and for the formation in the lung of the 
asbestos (ferruginous) bodies that characterize 
lung disease caused by asbestosis.  
Synchrotron-based scanning x-ray microscopy 
has demonstrated that long-lasting asbestos 
fibers and particulates cause a large mobilization 
of iron into the surrounding cells (mainly alveolar 
macrophages) and in tissue, which is partially a 
consequence of continuous iron adsorption onto 
the fibers and/or asbestos body degradation and 
metal release [56]. Iron (including magnetite) is 
an integral component of pathogenic amphibole 
(crocidolite, amosite) asbestos fibers and it 
occurs as a mineral contaminant of chrysotile 
(serpentine) asbestos [48, 72]. Studies suggest 
that chrysotile is not toxic by simply acting as a 
carrier of iron into the cell, but rather the redox 
activity of iron is potentiated when organized at 
the fiber’s surface into specific crystallographic 
sites having coordination states able to generate 
free radicals [73]. 
 
Published scientific data demonstrates that CFA, 
a known environmental hazard [74], is consistent 
with the previously undisclosed material used in 
widespread, persistent atmospheric aerosol
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Table 3. Alpha particle-emitting nuclides present in coal fly ash (CFA). Percent isotopic 
abundances of parent nuclides are indicated. Data from [44] 

 
Carcinogenic agents with sufficient evidence in humans, common to or contained in CFA 
Arsenic and inorganic arsenic compounds 
Beryllium and beryllium compounds 
Cadmium and cadmium compounds 
Chromium(VI) compounds 
Coal, indoor emissions from household combustion 
Gamma-radiation 
Iron and steel founding 
Nickel compounds 
Particulate matter in outdoor air pollution 
Radon-222 and its decay products 
Silica dust, crystalline 
Soot 

 
climate intervention [6,7,75-79]. The covert 
nature of those operations currently limits the 
ability to quantify human exposure to this 
deliberate form of air pollution or to separate it 
from other forms of air pollution caused by 
human activity. A person’s level of exposure to 
air pollution depends on a variety of factors 
relating to the host, the environment, and their 
interaction. Newer bio-monitoring techniques 
should enable more accurate measurements of 
exposure to specific air pollutants [80], which 
may be useful to estimate dose-response, 
exposure assessment, and risk characterization 
from published data on the known toxic 
component-elements of CFA [74]. 
 
In this Review we have disclosed some of the 
potential public health hazards of aerosolized 
CFA, focusing on the special risks for lung 
cancer. In Western nations, where trapping and 
sequestering is practiced, there may be a false 
assumption that only those living or working in 
close proximity to CFA dumps potentially risk 
exposure. As the principal undisclosed 
particulate used for climate intervention 
operations is consistent with CFA [6,7], a widely 
available waste product that requires little 
processing; the exposure risk is neither localized 
nor limited in scale. Potentially hundreds of 
millions of people might be at risk even at low 
exposure levels; airline flight crews and frequent 
fliers may be more at risk. Like the lung cancer 
risk for cigarette smoking, the full consequences 
of this type of air pollution might be decades 
away.  
 
For more than 40 years, the Monograph series of 
the International Agency for Research on Cancer 
(IARC) has classified human carcinogens. 
Researchers rearranged that data according to 

specific cancer sites for each relevant 
carcinogen, and further subdivided those into the 
known and suspected causes of cancer [81]. In 
Table 3 for lung cancer we abstract from that 
tabulation the relevant known carcinogens that 
are components of or common to CFA. 
 

4. CONCLUSION 
 
CFA contains a plethora of potentially 
carcinogenic agents likely to have cumulative 
additive and/or synergistic interactions with long-
term exposure. The CFA industry can be diligent 
about minimizing the likelihood of CFA 
aerosolization for sake of workers and those 
living in the proximity of CFA dumps. Jet-
spraying of CFA into the regions where clouds 
form represents a potential global and previously 
unrecognized long-term risk factor for respiratory 
disease and lung cancer, especially in vulnerable 
populations. 
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