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ABSTRACT 
 

Aims: The objective of this study was to prepare and characterize poly (ethylene glycol) methyl 
ether (mPEG)-conjugated chitosan (CS) nanogels, mPEG-CS, at different molar ratios for 5-
Fluorouracil (5-FU) delivery (5-FU-loaded mPEG-CS nanogels). 
Study Design: The chemical cross-linking of those polymers were synthesized by using 4-
Nitrophenyl chloroformate as coupling reagent.  
Place and Duration of Study: Department of Biomaterials & Bioengineering, Institute of Applied 
Materials Science, Vietnam Academy of Science and Technology, between February and June 
2015.  
Methodology: The chemical structure of mPEG-CS was characterized by Fourier transform 
infrared (FTIR) and proton nuclear magnetic resonance (1H NMR).  
Results: The particle sizes of 5-FU-loaded nanogels were nearly spherical in shape with diameter 
range of 20-50 nm, determined by transmission electron microscopy (TEM). Especially, whereas 
the encapsulation efficiency and loading capacity of mPEG-CS nanogels were independent of the 
molar ratio of mPEG, there was one factor that particularly stand out, 5-FU release behavior.  
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Conclusion: These results demonstrated that mPEG-CS nanogels present potential for controlled 
release of 5-FU working as a delivery system in cancer therapy. 
 

 
Keywords: Poly (ethylene glycol) methyl ether; chitosan; 5-fluorouracil; nanogels; drug delivery 

system. 
 

1. INTRODUCTION  
 

Drug delivery system (DDS) has been an 
impressive subject of studying and developing as 
an original method that enable the release of a 
therapeutic substance in the body and improve 
its efficacy and safety for reducing side-effects in 
patients. The main purpose of DDS is to 
particularly localize and target the drug within 
desired therapeutic range to expected tissue and 
cells while maintaining the systemic level of 
drugs [1-4]. In order to reach those intentions, 
nanomaterials (NMs), an excellent candidate for 
desirable drug therapy, possess numerous 
advantages such as protecting sensitive drug 
molecules from reticuloendothelial system (RES) 
in vivo, increasing surface area between loaded 
drug and tumor tissue, improving the solubility 
and bioavailability of poorly soluble drugs, and 
possibility to tailor-making the drug release [5,6]. 
Self-assembled nanogels, one of the most 
effective NMs for ameliorating possibly drug 
inactivation, has the advantages of 
straightforward synthesis without the presence of 
drugs and high biocompatibility [6,7]. 
  
In comparison with artificial polymer, chitosan 
(CS) obtained by deacetylation of chitin, which 
are suitable for the formation of nanogels due to 
its unlimited in biocompatibility, biodegradability, 
better stability, and low toxicity [8-13]. However, 
CS is only soluble in an aqueous acidic solution 
(pH< 6.5) because of a lot of amino groups on its 
chain, resulting in limitation of its pharmaceutical 
and biomedical applications [14]. As a result, a 
significant number of different modified CS such 
as N, N, N-trimethyl CS, N-acyl CS, N-
carboxyalkyl CS, O-carboxyalkyl and N-
carboxyacyl CS have been employed. However, 
these modifications might involve toxicity issues. 
To overcome these drawbacks, poly (ethylene 
glycol) methyl ether (mPEG), an excellent 
hydrophilic polymer, has been carried out to 
improve poor aqueous solubility of CS based on 
its favorable biodegradability, biocompatibility, 
low toxicity, low immunogenicity, and hydrophilic 
flexibility [15,16]. In order words, grafting mPEG 
onto CS chain not only optimize the 
biocompatibility of CS but also avoid the 
adsorption of protein and evade from RES         
[3,13,17-19]. There are several research focused 

on developing mPEG-CS delivery system for 
cancer therapy. For instance, Dong-Jun Fu and 
co-workers investigated the potential of mPEG 
grafted CS (mPEG-g-CS) to be used as 
nanocarriers for delivery of 5-flouroracil (5-FU). 
The results showed that the drug-loaded mPEG-
g-CS self-assembled micelles have potential as 
promising nanocarriers with controlled particle 
size and controlled release effect for effective 
anti-tumor activity [15]. In addition, XiangYe 
Kong et al. introduced a simple new method 
based on free-radical polymerization initiated by 
potassium persulfate (KPS) to prepare the 
mPEG-CS diblock copolymer (mPEG-CS) as a 
controlled delivery system. In vitro cell culture 
assay demonstrated that mPEG-CS 
nanoparticles are non-toxic and cell compatible, 
which can be safely used as potential drug 
carriers for the treatment of cancer [16]. In 
another previous research, PEGylation of CS 
derivatives with PEG of different molecular 
weights have been also reported to improve the 
aqueous solubility of CS [20]. 
 
In this study, in order to examine the influence of 
the molar ratios of mPEG and CS on drug 
loading and release behavior, mPEG-CS 
conjugate were first prepared at different molar 
ratios as controlled-release systems for 5-FU, 5-
FU-loaded mPEG-CS nanogels, in which CS was 
used as cross-linker and mPEG was designed as 
hydrophilic co-monomer. The obtained nanogels 
were then characterized by proton nuclear 
magnetic resonance (

1
H NMR), Fourier transform 

infrared (FTIR) and transmission electron 
microscopy (TEM). Moreover, the drug loading 
and release behavior of 5-FU-loaded mPEG-CS 
nanogels were also evaluated. This study is 
expected to create significant opportunity for 
drug delivery in cancer therapy. 
 

2. MATERIALS AND METHODS  
 
2.1 Materials 
 
CS (Mw: 100-300 kDa), 5-FU, 4-Nitrophenyl 
chloroformate (PNC, Mw: 201.56 Da), 
Tetrahydrofuran (THF), and poly (ethylene 
glycol) methyl ether (mPEG, Mw: 5 kDa) were 
purchased from Sigma-Aldrich (St. Louis, MO, 



USA). All reagents and solvents were used 
without further purification.  
 

2.2 Methods 
 
2.2.1 Synthesis of mPEG-CS 
 
The mPEG-CS conjugate was synthesized by 
using PNC as intermediate under controlled 
conditions of temperature and vacuum 
environment (Scheme 1). First, 0.25 g of mPEG 
was melted down at 65°C under vacuum and 16 
mg of PNC was later added into the mPEG 
solution under constant stirring for 6 h, mPEG
PNC. Next, the mixture was left to cool at 40
followed by addition of THF solution (5 mL) to 
remove an excess amount of mPEG. The 
obtained mPEG-PNC was added drop
the CS solution (pH 5), and then the mixture w
stirred for 24 h and dialyzed by dialysis 
membrane (MWCO 12-14 kDa, Spectrum 
Laboratories, Inc., USA) against deionized water 
(deH2O) for 4 days at room temperature. The 
deH2O was changed 5-6 times a day and the 
resulting solution was lyophilized to obt
mPEG-CS. The mPEG-CS conjugate was further 
prepared at different molar ratios (1:1, 5:1, and 
10:1 of mPEG and CS) as described above, 
respectively.  
 
2.2.2 Characterization 
 
For the purpose of investigating the presence of 
mPEG on CS, FTIR analysis (Nicolet Nexus 
5700 FTIR, Thermo Electron Corporation, 
Waltham, MA, USA) of CS, mPEG, and mPEG
CS was carried out with KBr pellets in 500
cm

-1
 range. 

1
HNMR spectrum of mPEG

obtained on a Bruker Avance 500 (Bruker
USA). The size and morphology of 5
mPEG-CS nanogels were imaged by TEM 
(JEM–1400 TEM; JEOL, Tokyo, Japan) at an 

Scheme 1. Synthetic route for mPEG
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followed by addition of THF solution (5 mL) to 
remove an excess amount of mPEG. The 

PNC was added drop-wise into 
the CS solution (pH 5), and then the mixture was 
stirred for 24 h and dialyzed by dialysis 

14 kDa, Spectrum 
Laboratories, Inc., USA) against deionized water 

O) for 4 days at room temperature. The 
6 times a day and the 

resulting solution was lyophilized to obtain 
CS conjugate was further 

prepared at different molar ratios (1:1, 5:1, and 
10:1 of mPEG and CS) as described above, 

For the purpose of investigating the presence of 
on CS, FTIR analysis (Nicolet Nexus 

5700 FTIR, Thermo Electron Corporation, 
Waltham, MA, USA) of CS, mPEG, and mPEG-
CS was carried out with KBr pellets in 500-4000 

HNMR spectrum of mPEG-CS was 
obtained on a Bruker Avance 500 (Bruker Co., 
USA). The size and morphology of 5-FU-loaded 

CS nanogels were imaged by TEM 
1400 TEM; JEOL, Tokyo, Japan) at an 

accelerating voltage of 300 kV. The sample was 
prepared by placing a drop of solution in deH
(1 mg/mL) onto a carbon-copper gr
mesh, Ted Pella, Inc., USA) and air
min.  
 
2.2.3 Drug loading content (DLC) and drug 

loading efficiency (DLE) 
 
5-FU have been loaded into the mPEG
nanogels by equilibrium swelling technique. 
Initially, 10 mg of 5-FU and 100 mg of
conjugate were dissolved independently in 
deH2O and then mixed together. The mixture 
was sonicated for 60 min and magnetic stirred for 
24 h. The solution was later dialyzed by dialysis 
membrane (MWCO 3.5 kDa, Spectrum 
Laboratories, Inc., USA) against deH
remove unloaded 5-FU. The 5
mPEG-CS nanogels was obtained under solid 
phase by lyophilization. 
 
Three different 5-FU-loaded mPEG
were dissolved independently with a solution of 1 
mL of CH3COOH (0.25 M) and 1 mL of 
acetonitrile, followed by sonication for 30 min and 
filtration. These experiments were taken in 
triplicate for high performance liquid 
chromatography (HPLC) analysis. The total 5
contents in mPEG-CS were measured using the 
Shimadzu Prominence LC-20A series HPLC 
system (Shimadzu, Kyoto, Japan). The injected 
volume was 20 µL and the mobile phase 
(acetonitrile: water = 97: 3) was delivered at 1.00 
mL/min. A reversed-phase column (Fortis Amino, 
150×4.6 mm, 5 µm pore size, Fortis 
Technologies Ltd., Cheshire, UK) was used and 
column effluent was monitored with a UV 
detector at 260 nm. The calibration curve for 
quantification of 5-FU in mPEG-CS was found to 
be linear over the standard 5-FU concentration
range of 0-100,000 ng/mL with a h
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coefficient of R2= 0.999. The %DLC and %DLE 
were calculated using following equations. The 
%DLC and %DLE were calculated using 
following equations: 
 

DLE (%) = (weight of drug in particles/ weight 
of drug feed initially) × 100.   
                                    
DLC (%) = (weight of drug in particles/ 
weight of particles and drug) × 100.  

 
2.2.4 In vitro release 
 
The release of 5-FU-loaded mPEG-CS nanogels 
was dialyzed (MWCO 3.5 kDa) into a vial 
containing phosphate buffer saline (PBS) and 2 
% (v/v) Tween 80 (12.5 mL, pH 7.4). The release 
medium (0.5 mL) was withdrawn at 
predetermined time intervals (2, 4, 6, 8, 10, and 
12 h), filtered (pore size = 0.20 µm) and replaced 
with an equivalent volume of fresh medium. 
These experiments were repeated three times for 
the HPLC analysis. 
 

3. RESULTS AND DISCUSSION 
 
3.1 Characterization of mPEG-CS Conju-

gate and 5-FU-loaded mPEG-CS 
Nanogels  

 
The mPEG-CS was characterized by 

1
H NMR 

analysis (Fig. 1). The solvent peak of D2O was 
found in 4.74 ppm. Typical peak at 3.4-3.94 ppm 
(H-b, H-c, H-d, H-e, H-2, and H-3) were assigned 
to methylene protons of CS saccharide units and 
repeat units in mPEG. Peaks at 2.95 ppm (H-c) 
and 3.37 ppm (H-1) were attributed to –CH-NH- 
from CS and –OCH3 from mPEG, respectively. 
The peaks at 1.95-1.98 ppm (H-f) appeared, 
which were assigned to –NH-CO-CH3. The 
presence of all these resonance signals imply 
that mPEG-CS conjugate was successfully 
prepared.  
 
The FTIR spectra of CS (i), mPEG (ii), and 
mPEG-CS are presented in Fig. 2. The spectrum 
of CS reveals distinctive absorption bands at 
1656 cm

-1
 (amide I), 1594 cm

-1
 (-NH2 bending), 

and 1400 cm
-1

 (amide III) (Fig. 2i). The 
absorption bands at 1150 cm-1 (asymmetric 
stretching of the COOOC bridge), 1092 cm

-1
, and 

1042 cm-1 (skeletal vibration involving the COO 
stretching) were assigned to its saccharine 
structure. In addition, the increased intensity of 
the peaks at around 2910 cm-1 and 2830 cm-1, 
and 1094 cm

–1
 show the CH2 groups, and C-O-C 

stretch of mPEG, respectively (Fig. 2ii). As 

shown in Fig. 2iii, the CS amide peaks slightly 
shifted to 1631 cm

-1
 and 1529 cm

-1
, respectively. 

The shifts were possibly due to hydrogen 
bonding between amide carbonyl with mPEG 
hydroxyl. Besides, the increased intensity of the 
peaks at around 2924 cm

-1
 and 1100 cm

-1
 

indicated the CH2 groups and C-O-C stretch of 
mPEG. These results also indicate that the 
amino groups of CS were substituted by mPEG 
groups.  
 
As shown in Fig. 3, the 5-FU-loaded mPEG-CS 
nanogels were nearly spherical in shape and 
their particle size was in the range of 20-50 nm. 
According to previous reports, nanoparticles are 
ranging from 10-200 nm in size that have 
enormous potential advantages, including higher 
drug efficiency, enhanced therapeutic efficacy 
and cytotoxicity as well as facilitating penetration 
of drugs through various biological barriers such 
as the mucosal membrane and tumor 
vasculature. Furthermore, the use of drug-
encapsulated nanoparticles has been shown to 
overcome drug-resistant cancer cells by 
facilitating entry into cells through surface binding 
and endosomal uptake routes, as opposed to the 
normal route of administration of the drug         
alone [21]. Therefore, the obtained nanogels can 
serve as potential drug nanocarriers to deliver        
5-FU.  
 

3.2 Drug Loading and Release Behavior  
 
The drug loading efficiencies of 5-FU-loaded 
mPEG-CS were 11.5% at mPEG-CS (1:1), 
10.0% at mPEG-CS (5:1), and 10.39% at mPEG-
CS (10:1). There were no significant differences 
in 5-FU loading among the three ratio groups. 
These results show that the 5-FU loading was 
independent of different molar ratios of mPEG-
CS.  
 
The in vitro release behavior of 5-FU from self-
assembled nanogels was carried out in PBS (pH 
7.4) at 37°C (Fig. 4). The release of 5-FU from 
mPEG-CS (1:1) was 23% at 2 h, and then 
increased to 39% at 4 h. The release behavior of 
5-FU could be explained by the release of a 
hydrophilic drug loosely bound on the surface of 
mPEG-CS nanogels. Thereafter, the drug was a 
relatively slow release up to 12 h of 41%, only 
2% 5-FU was released during that period of time. 
The percentages of 5-FU released from mPEG-
CS (5:1) were 17% at 2 h and 33% at 4 h. After 
12 h, 37% 5-FU was slowly delivered. Compared 
with mPEG-CS (10:1), the drug was rapidly freed 
up 94% at 12 h. In aqueous medium, the pores 



at the surface of the mPEG-CS nanogels are 
diffused through by the water uptake; 
accordingly, loosely bound drug would be 
delivered. Based on these results, mPEG
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Fig. 3. (a) TEM image and (b) particle size distribution of 5
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(1:1) and mPEG-CS (5:1) might be suitable for 
sustained and controlled DDS, rather than 
mPEG-CS (10:1), the highest performance 
mPEG. 
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Fig. 3. (a) TEM image and (b) particle size distribution of 5-FU-loaded mPEG-CS nanogels
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CS (5:1) might be suitable for 
sustained and controlled DDS, rather than 

CS (10:1), the highest performance 

 

 

CS nanogels 



 
Fig. 4. Drug release of mPEG-CS at 

ratio of 1:1 (dashed line); 5:1 (dash
10:1 (solid line), respectively

 

4. CONCLUSION 
 
We successfully developed mPEG-
and 5-FU-loaded mPEG-CS nanogels as 
controlled delivery systems. The obtained 
nanogels were spherical in shape with diameter 
range of 20-50 nm, demonstrating promising 
applications for targeted cancer therapy. 
Although the geometrical characterization of the 
nanogels show promise for drug loading, the 
encapsulation efficiency of 5-FU was re
low. Interestingly, the drug release profile of 5
showed that the highest percentage of mPEG 
over the modified CS nanogels is, the fastest is 
the drug release behavior. Consequently, mPEG
CS nanogels present a potential for developing 
suitable nanomedicine carriers in cancer 
treatment.  
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