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ABSTRACT 
 

Some wellhead pressure - flow rate correlations developed for Niger Delta region oil wells are in-
house estimation tool by the operating companies in this region. However, the limited available 
correlations for wellhead pressure - flow rate prediction for Niger Delta oil wells are not generalized. 
A more robust and adaptable soft computing approach - Artificial Neural Network (ANN) was 
developed to address the inconsistency using field test data: production flow rate (q), flowing 
wellhead pressure (Pwh), choke size (S), gas-liquid ratio (GLR), flowing temperature (FTHP) and 
basic sediments and water (BS&W) obtained from 64 oil wells in Niger Delta fields. The developed 
ANN models were based on Gilbert and modified Gilbert forms of equation for predicting wellhead 
pressure - flow rate relationship. The results obtained indicate that the developed ANN models 
resulted in accurate predictions than the empirical correlations. The statistical analysis of the 
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developed ANN models predictions with the field test data also resulted in average error, absolute 
relative error, root mean error and standard deviation of -0.1233, 0.1920, 0.3650 and 0.3621 for 
Gilbert form and -0.0450, 0.1045, 0.4533 and 0.4498 for modified Gilbert form, respectively. The 
results also show that the ANN models’ prediction resulted in coefficient of determination (R2) of 
0.9653 and 0.9951 for Gilbert and modified Gilbert respectively. The developed ANN models for 
Gilbert and modified Gilbert predictions are close with coefficient of determination (R2) of 0.9619. 
Therefore, the ANN models are superior to the empirical correlations’ predictions for wellhead 
pressure and can be used as a quick-and-robust tool for oilfield prediction of wellhead pressure - 
flow rate relationship in Niger Delta oil fields. 
 

 
Keywords: Wellhead pressure; flow rate correlation; artificial neural network (ANN); gilbert form; 

modified gilbert Form; Niger Delta Region. 
 
1. INTRODUCTION 
 
Wellhead chokes are used in the oil and gas 
industry to control flow rate, to maintain well 
allowable, to protect surface equipment, to avert 
water and gas coining, and to provide the 
necessary backpressure to reservoir to avoid 
formation damage from excessive drawdown [1]. 
Therefore, it controls the surface pressure and 
production rate from the well. Also, they are 
selected so that any fluctuations in its line 
pressure downstream have no effect on the 
production rate. Available literature to establish 
multiphase orifice flow correlations can be 
categorized as analytical models or empirical 
correlations. Empirical correlation involves using 
dimensional analysis to select and group the 
most relevant variables or using field or 
laboratory data [2]. The later empirical correlation 
approach is the most widely used method to 
establish multiphase orifice flow correlations in oil 
and gas industry. Tangren et al. [3] laid the 
theoretical framework for gas-liquid two-phase 
flow through restrictions [4]. Their work was 
analytical model. Gilbert [5] pioneered work that 
suggested an empirical correlation for critical flow 
through choke that predicts liquid flow rates as 
function of flow wellhead pressure, gas-liquid 
ratio and surface wellhead choke size. The 
Gilbert’s correlation is expanded in equation 1. In 
2007, Ghareeb and Shedid [6] added that 
Gilbert’s correlation is valid for critical flow 
occurring when the upstream pressure of the 
choke is at least 70% higher than the 
downstream pressure or when the ratio of 
downstream - upstream pressure is equal to 
0.588. So far, several researchers have 
proposed various correlations based on Gilbert’s 
form of correlation. Baxendell [7] developed a 
revised correlation to Gilbert [5] equation based 
on incremental data to update the correlation 
exponents. Ros [8] and Achong [9] presented 

another Gilbert’s correlation form with 
modification on the constant and exponents 
using regression parameters based on data from 
different oil fields. Similarly, Pilehvari [10] and 
Beiranvand et al. [11] revised the Gilbert [5] 
equation with new constant and exponents. In 
addition, Owolabi et al. [12] and Okon et al. [13] 
updated the Gilbert’s correlation constants for 
Niger Delta oil wells using data from the region. 
Table 1 presents the authors’ correlation’s 
constants. On the other hand, Beiranvand et al. 
[11] and Khorzoughi et al. [14] introduced 
additional parameters: basic sediments and 
water (BS&W) and temperature (T) to modify the 
Gilbert [5] equation form to predict wellhead 
pressure-flow rate relationship. This correlation is 
referred to as modified Gilbert correlation [13], 
and is expressed in equation 2. Table 2 provides 
the various authors’ correlation’s constants for 
modified Gilbert correlation. In essence, several 
correlations have been published to describe 
critical two-phase flow through wellhead chokes, 
but most of these correlations were based on 
limited ranges of flow variable [15]. The validity of 
these developed correlations is limited by the 
quantity and scope of the data upon which they 
are based. Regrettably, some correlations are 
made for in-house estimate by the operating 
companies in the Niger Delta region. For Niger 
Delta region oil wells, limited works: Owolabi et 
al. [12] and Okon et al. [13] are the correlations 
in the public domain based on data from this 
region. These developed correlations have 
accurate wellhead pressure - flow rate predicts 
over their counterparts developed by other 
researchers with data from other regions. There 
are available literatures [16,2] that mentioned the 
limitation of Gilbert [5] correlation for critical 
multiphase orifice flow. However, it remains the 
widely used in the petroleum industry, as it is 
based on well production parameters. Even the 
attempt by Beiranvand et al. [11] and Khorzoughi 
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et al. [14] on this multiphase flow condition still 
centered on the Gilbert [5] correlation variables 
with additional two production terms. The reason 
that makes this empirical approach of multiphase 
flow parameter estimation frequently use is that 
the variables are obtained at the surface 
production conditions. This accounted for its 
accurate predictions of production rate - wellhead 
pressure relationship. With this in mind, the 
modeled neural network models in this work are 
based on Gilbert [5] and modified Gilbert (2013) 
correlations’ parameters.  
 
The early days of application of artificial neural 
network (ANN) in petroleum industry dates back 
to 1989; where it was used in intelligent reservoir 
simulation interface, drill bit diagnosis and well 
log interpretation [17]. Recently, it use has 
gained popularity in petroleum engineering; as 
several authors have discussed the applications 
of neural network in oil and gas industry [18]. 
Therefore, the area of applications of ANN in 
petroleum industry cannot be overemphasized. It 
applications have been in areas where complex 
parameters are involved in the prediction and 
analysis of petroleum production systems as well 
as reservoir responses; during the production of 
oil and gas reservoirs [19]. Available literatures 
have provided the application of ANN in areas of 
multiphase flow regime study, oil PVT (pressure-
volume-temperature) properties prediction, well 
performance prediction, reservoir saturation 
study, among others. So, for over two decades, 
this soft computing approach has find its way into 
the exploration and production (E&P) industry; as 
predicting tool to study complex system owing to 
its adaptability and flexibility even with 
discontinuous systems [20]. In multiphase flow, 
ANN has been applied in this area and achieved 
promising results compared to the conventional 
methods: empirical correlation and mechanistic 
models. Unfortunately, most of the developed 
correlations for wellhead pressure - flow rate 
predictions are very restricted in term of wide 
variety of data sets [13]. Also, these developed 
correlations were based on linear or non-linear 
multiple regression techniques; an approach 

which cannot account for any discontinuity in the 
system. Recent application of ANN provides an 
integrated approach for oil and gas well 
production. With regard to this topic, limited or no 
work has been reported on the application of 
ANN technique to predict wellhead pressure - 
flow rate relationship for Niger Delta region. 
Therefore, given sufficient actual field data sets, 
the neural network can be trained to predict 
wellhead pressure - flow rate much closer to the 
measured values than those from the established 
correlations. Thus, this paper evaluates the 
application of ANN models to predict wellhead 
pressure - flow rate relationship for Niger Delta 
oil wells. 
 ��� = ����	
���                         (1) 
 
where: 
 

GLR = Gas-Liquid Ratio 
q = Flow Rate 
S = Choke Size 
Pwh = Flowing Wellhead Pressure 
C, m and n = Constants 
 

Table 1. Gilbert equation authors’ constants 
 

Authors Correlation constants 
C m n 

Gilbert (1954) 10.0 0.546 1.89 
Baxendell (1957) 9.56 0.546 1.93 
Ros (1960) 17.40 0.50 2.00 
Achong (1961) 3.82 0.65 1.88 
Pilehvari (1980) 46.67 0.313 2.11 
Owolabi et al. (1991) 35.72 0.289 1.83 
Beiranvand et al. (2012) 30.49 0.589 2.275 
Okon et al. (2015)  5.1474 0.5048 1.7093 

 

��� = ��� ��	��������&���� ���� ��� �!"� # 
          (2) 

 
where: 
 

TSC = Surface Temperature (60oF) 
BS&W = Basic Sediments and Water 
A, B, C, D, E and F = constants. 

 
Table 2. Modified Gilbert equation authors’ constan ts 

 
Authors Correlation constants 

A B C D E F 
Beiranvand et al. (2012) 0.0382 2.151 0.5154 0.5297 0 1.0 
Khorzoughi et al.(2013) 1.0 1.50 0.10 1.0 -0.8 0.5 
Okon et al. (2015) 0.0509 1.8134 0.6749 0.2235 0.000029 1.321 
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2. MATERIALS AND METHODS 
 
2.1 Data Acquisition and ANN Models 

Development 
 
Data used for this work were collected from sixty 
four (64) different fields’ oil wells in Niger Delta 
region. The data obtained included flowing 
wellhead pressure (Pwh), production rate (q), 
choke size (S), gas-liquid ratio (GLR), basic 
sediments and water (BS&W) and flowing 
temperature (FTHP). Table 3 presents the 
statistical description of these input data for the 
ANN model development. The statistical 
description of these data was performed using 
MINITAB 17.1.0 [21]. The neural network model 
was developed using PYTHIA, developed by 
Runtime Software [22]. The data were 
normalized and then fifty percent (50%) of it was 
used to develop the ANN model for training. The 
challenge of determining the network structure 
and optimal numbers of hidden layers and nodes 
was handled by using evolutionary optimization 
in the software. The evolutionary optimizer uses 
evolutionary algorithms for the selection and 
generation of the fitted neural networks for a 
given training data set. The fitted ANN models for 
Gilbert [5] and Modified Gilbert (2013) 
approaches for wellhead pressure - flow rate 
relationship prediction are presented in Figs. 1 
and 11, respectively. The fitted ANN models 
indicate that a neural network of three (3) inputs, 
three levels: 6, 5, 1 neurons (i.e. 12 neurons) and 
one (1) output predicted the wellhead pressure 
based on Gilbert [5] approach. While a neural 
network of five (5) inputs, three levels: 6, 6, 1 
neurons (i.e. 13 neurons) and one (1) output 
predicted the wellhead pressure based on 
modified Gilbert (2013) approach. The networks 
were trained at different training level until it was 
able to predict the given output values (wellhead 
pressure). Over-training of the networks was 
avoided by setting the stopping criteria at 500 
repetitions, 0.000001 deviations and training rate 
of 0.8 in the training unit of the PYTHIA software 
[22]. The aforementioned phenomenon causes 
the network to memorize the result rather than 

generalizes it [17]. Thus, this makes the ANN 
model to perfectly predict the data similar to 
training data, but will perform badly when new 
cases are submitted to the network. After the 
training phase, the networks become ready for 
testing and evaluation. To achieve this, the last 
data set; which the ANN models have not seen 
during training was used for the validation of the 
models. 
 
2.2 ANN Models Evaluation 
 
To demonstrate the robustness of the developed 
ANN models, their predictions were compared 
with the actual field data and some correlations 
(as mentioned in this work) for wellhead pressure 
- flow rate prediction. Average error, absolute 
error, root mean square, standard deviation and 
coefficient of determination were used as good 
indicator of the accuracy of the ANN models. 
Tables 4 and 5 present the statistical evaluation 
of the ANN models and some correlations 
prediction; based on Gilbert [5] and Modified 
Gilbert (2013), respectively.    
 
3. RESULTS AND DISCUSSION 
 
As earlier alluded to, the modeled ANN models 
predictions were compared with other empirical 
correlations prediction to ascertain their 
performance and accuracy. The selected 
correlations in the literature include: Gilbert [5], 
Baxendell [7], Ros [8], Achong [9], Pilehvari [10], 
Owolabi et al. [12], Beiranvand et al. [11] and 
Okon et al. [13] for Gilbert equation. While 
Beiranvand et al. [11], Khorzoughi et al. [14] and 
Okon et al. [13] were selected for modified 
Gilbert form of equation. 
 
3.1 Gilbert Approach 
 
For the Gilbert [5] form of equation, Figs. 2 
through 10 depict the comparison of the ANN 
model and the mentioned correlations predictions 
with the actual field data. Fig. 2 present the ANN 
model prediction. The Figure indicates that, the 
ANN model predicted the actual field

 
Table 3. Description of the input data used for the  ANN models formulation  

 
Parameters  Min Max  Std. dev.  Coef. Var.  Skewness  Kurtosis  
Flowing Wellhead Pressure 
Choke Size; S 
Production Rate; q 
Basic Sediments & Water 
Gas-Liquid Ratio; GLR 
Flowing Temperature; T 

36 
16 
263 
0 
93 
100 

2320 
76 
5313 
0.880 
4134 
150 

447.20 
13.93 
1090.0 
0.3213 
920.0 
15.34 

76.55 
39.47 
67.56 
70.64 
104.22 
12.43 

1.57 
0.82 
1.19 
-0.32 
2.24 
0.18 

2.92 
0.30 
1.15 
-1.53 
4.93 
-1.20 
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data better than the other empirical correlations. 
This is noted on the alignment of the field data 
(field wellhead pressure) and ANN model 
prediction along the regression line on Fig. 2 
compared to other Figures (i.e. Figs. 3 through 
10). The outperformance of the ANN model over 
the empirical correlations is also indicated on its 
prediction statistical evaluation; as presented in 
Table 4. The absolute relative error and 
coefficient of determination (R2) which are the 
most important indicator of the accuracy of the 
ANN model indicates that the model has 0.1920 
absolute relative error and 0.9653 coefficient of 
determination (R2). Whereas, the empirical 
correlations resulted in higher absolute relative 
error and lower coefficient of determination (R2), 
as shown in Table 4. This result as presened in 
Table 4 implies that the ANN model prediction 

has 96.53% explained variation with the field 
wellhead pressure data. While the other 
empirical correlations have explained variations 
of 70.14%, 69.98%, 68.97%, 70.67%, 62.38%, 
61.85%, 67.11% and 69.41% for Gilbert [5], 
Baxendell [7], Ros [8], Achong [9], Pilehvari [10], 
Owolabi et al. [12], Beiranvand et al. [11] and 
Okon et al. [13], respectively. Also, the less 
correlation of the actual field data and the 
empirical correlations prediction is noted on the 
scattered points on Figs. 3 through 10. 
Furthermore, the most scattered points were 
found in Fig. 3, representing Owolabi et al. [12] 
correlation and Fig. 9, which represent Pilehvari 
[10] correlation predictions. This observed results 
indicate their poor performance for this set of 
data for Niger Delta oil wells’ wellhead pressure - 
flow rate prediction. 

 

 
 

Fig. 1. ANN model for Gilbert approach 
 

Table 4. Gilbert equation statistical analysis 
 

Authors Average 
error 

Absolute 
error 

Root mean 
square 

Standard 
deviation 

Coefficient of 
determination  

Gilbert (1954) -0.5604 0.6734 1.4760 1.4645 0.7014 
Baxendell (1957) -0.3000 0.4960 1.1883 1.1790 0.6998 
Ros (1960) -0.3830 0.5409 1.2956 1.2854 0.6897 
Achong (1961) -0.2125 0.4675 1.1022 1.0936 0.7067 
Pilehvari (1980) 0.2288 0.4909 0.7380 0.7322 0.6238 
Owolabi et al. (1991) -0.3280 0.5380 1.1762 1.1670 0.6185 
Beiranvand et al. (2012) -0.6890 0.7940 1.7986 1.7845 0.6711 
Okon et al. (2015) -0.1477 0.4430 0.9658 0.9582 0.6941 
ANN Model -0.1233 0.1920 0.3650 0.3621 0.9653 
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Fig. 2. ANN model prediction (Gilbert approach) 
 

 
 

Fig. 3. Okon et al. correlation prediction (Gilbert  approach) 
 

 
 

Fig. 4. Owolabi et al. correlation prediction (Gilb ert approach) 
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Fig. 5. Gilbert correlation prediction (Gilbert app roach) 
 

 
 

Fig. 6. Baxendell correlation prediction (Gilbert a pproach) 
 

 
 

Fig. 7. Ros correlation prediction (Gilbert approac h) 
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Fig. 8. Achong correlation prediction (Gilbert appr oach) 
 

 
 

Fig. 9. Pelihvari correlation prediction (Gilbert a pproach) 
 

 
 

Fig. 10. Beiranvand et al. correlation prediction ( Gilbert approach) 
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3.2 Modified Gilbert Approach 
 
The modified Gilbert approach ANN model and 
the other empirical correlations predictions are 
presented in Figs. 12 through 15. Fig. 12 depicts 
the ANN model prediction compared with the 
actual field wellhead pressure data. The 
comparison result indicates a strong correlation 
between the field data and ANN model 
prediction. This ascertion is indicated on the 
alignment of the scattered points on the 
regression line on  Fig. 12. Also, the coefficient of 
determination (R2); as presented in Table 5, 
indicate a 99.51% explained variation between 
the ANN model prediction and actual field 
wellhead pressure data. Additionally, the 
absolute relative error of the ANN model 
prediction is 0.1045 compared to the other 
empirical correlations with 0.5391, 0.9922 and 
0.4737 for Beiranvand et al. [10], Khorzoughi et 
al. [14] and Okon et al. [13], respectively. The 

obtained results implies that the ANN model 
outperform the empirical correlations for 
wellhead pressure - flow rate prediction. This is 
observed in the empirical correlations less 
coefficient of determination (R2) values, as 
presented in Table 5. As observed in Figs. 2 and 
12, the two developed ANN models closely 
predicted the field wellhead pressure. In this 
connection, the developed ANN models wellhead 
pressure predictions resulted in coefficient of 
determination (R2) of 0.9619 as presented in Fig. 
16. In all, both ANN models predicted the 
wellhead pressure - flow rate relationship for 
Niger Delta oil wells more accurate than the 
empirical correlations. This shows that the ANN 
models were well trained. Secondly, the 
adaptability and flexibility of the ANN model to 
predict continuous and even discontinuous 
systems contributed to its outperformance over 
the empirical correlations. 

 

 
 

Fig. 11. ANN model for modified Gilbert approach 
 

Table 5. Modified Gilbert approach statistical anal ysis 
 

Prediction approach Average 
error 

Absolute 
error 

Root Mean 
square 

Standard 
deviation 

Coefficient of 
determination 

Beiranvand et al. (2012) -0.3745 0.5391 1.3400 1.3291 0.6784 
Khorzoughi et al. (2013) -0.6711 0.9922 1.5832 1.5708 0.4422 
Okon et al. (2015)   -0.2515 0.4737 1.1084 1.0997 0.7185 
ANN Model  -0.0450 0.1045 0.4533 0.4498 0.9951 
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Fig. 12. ANN model prediction (Modified Gilbert app roach) 
 

 
 

Fig. 13. Okon et al. correlation prediction (Modifi ed Gilbert approach) 
 

 
 

Fig. 14. Beiranvand et al. correlation prediction ( Modified Gilbert approach) 
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Fig. 15. Khorzoughi et al. correlation prediction ( Modified Gilbert approach) 
 

 
 

Fig. 16. Comparison of the ANN models: Gilbert and Modified Gilbert predictions 
 
4. CONCLUSION 
 
Most of the developed correlations to predict 
wellhead pressure - flow rate relationship are 
based on data obtained from field(s) outside 
Niger Delta region. Their predictions for Niger 
Delta oil wells are lower or higher than the 
expected field values when applied to the 
aforementioned region. On the other hand, some 
developed wellhead pressure - flow rate 
correlations based on Niger Delta field data are 
in-house equations by the operating companies 
in the Niger Delta region. Regrettably, these 
correlations are controlled as proprieties for in-
house estimation by the operating companies. 

Although there are some correlations in the 
literature for wellhead pressure - flow rate 
predictions based on data from Niger Delta 
region, but these correlations lacks flexibility and 
adaptability due to its variability on data range. A 
more robust and adaptable soft computing 
approach - artificial neural network (ANN) models 
were developed. It resulted in favourable 
prediction for wellhead pressure - flow rate based 
on field test data obtained from sixty four (64) oil 
wells in Niger Delta region. The ANN prediction 
when compared to some existing correlations 
indicates it outperform them, based on the 
following results: 
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1. The developed ANN models predict the 
field wellhead pressure with absolute 
relative error and coefficient of 
determination (R2) of 0.1920 and 0.9653 
for Gilbert equation form and 0.1045 and 
0.9951 for modified Gilbert equation form 

2. The ANN models’ standard deviation for 
Gilbert form and modified Gilbert form are 
0.3621 and 0.4498 respectively 

3. The developed ANN models based on 
Gilbert form and modified Gilbert form 
approaches are comparable with 
coefficient of determination (R2) of 0.9619. 

 
In conclusion, the developed ANN models’ 
predictions compared to the empirical 
correlations depict high precision from statistical 
analysis. Therefore, the developed ANN models 
can serve as a practical and robust tool for 
oilfield prediction of wellhead pressure - flow rate 
relationship in Niger Delta region oil wells.  
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APPENDIX 
 

The equations used for statistical analysis of the ANN model and empirical correlations’ predictions: 
 

1. Average error: 
 

$%&' = 1) * ����
+,-./0 − ����
23/-.0����
+,-./0
4

,5�  

 
2. Absolute error: 

 

$%67 = 1) * 8����
+,-./0 − ����
23/-.0����
+,-./0 84
,5�  

 
3. Root mean square error: 

 

$927 = 1) * :����
+,-./0 − ����
23/-.0����
+,-./0 ;<4
,5�  

 
4. Standard deviation: 

 

=/-& = 1) >) * :����
+,-./0 − ����
23/-.0����
+,-./0 ;<4
,5� − * :����
+,-./0 − ����
23/-.0����
+,-./0 ;<4

,5�  

 
 

5. Coefficient of determination: 
 

?< =  AB
1) ∑D����
+,-./0 − ����EEEEE
+,-./FD����
23/-.0 − ����EEEEE
23/-.F

GH1) ∑D����
+,-./0 − ����EEEEE
+,-./F< 1) ∑D����
23/-.0 − ����EEEEE
23/-.F<IJK
<
 

 
where: 
 
 ��� +,-./0 = Field Wellhead Pressure 

 ��� 23/-.0 = Model Predicted Wellhead Pressure 

 ����EEEEE
+,-./ = Average Field Wellhead Pressure 
 ����EEEEE
23/-. = Average Model Predicted Wellhead Pressure 
 N = Number of Wellhead Pressures 
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