
*Corresponding author: E-mail: 1814078959@qq.com;

Current Journal of Applied Science and Technology

24(6): 1-11, 2017; Article no.CJAST.37852
Previously known as British Journal of Applied Science & Technology
ISSN: 2231-0843, NLM ID: 101664541

Research of SLA-Based Multitask-User-Requests
Admission Control and Related Algorithm for the

Cloud Service Provider

Zhi-Hong Liang1, Dong Wang2*, Fei Dai1 and Yu-Xiang Huang2

1School of Big Data and Intelligent Engineering, Southwest Forestry University, Kunming 650500,
China.

2School of Software, Yunnan University, Kunming 650091, China.

Authors’ contributions

This work was carried out in collaboration between all authors. Author ZHL designed the study,
performed the statistical analysis, wrote the protocol and wrote the first draft of the manuscript.

Authors DW and FD managed the analyses of the study. Author YXH managed the literature
searches. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/CJAST/2017/37852

Editor(s):
(1) Samir Kumar Bandyopadhyay, Professor, Department of Computer Science and Engineering, University of Calcutta, India.

Reviewers:
(1) Borislav Kolaric, Serbia.

(2) K. Gokulnath, Parul University, India.
(3) R. Gomathi, Bannari Amman Institute of Technology, India.

Complete Peer review History: http://www.sciencedomain.org/review-history/22183

Received 30 th October 2017
Accepted 1 st December 2017

Published 7 th December 2017

ABSTRACT

With the population of Cloud service users showing an explosive growth, how to reduce costs and
improve resource utilization while ensuring service quality has become a very important bargaining
chip for the cloud service provider can survive in the fierce competition in the industry or not. Based
on the service level agreement (SLA) constraints of Cloud service, this paper studies the request
admission control strategy of multitask-user-requests. By discussing and analyzing the possible
problems in the different stages of request admission, resource scheduling and subtasks execution
for multitask-user-requests, tow priority dynamic configuration strategies and a delay compensation
strategy are proposed to improve the ratio of requests acceptance, cut down SLA default rates
during subtasks are executed, and improve users’ experience while the SLA violate occurs. What’s
more, two resource scheduling strategies aimed at improving the resource utilization rate to reduce

Short Research Article

Liang et al.; CJAST, 24(6): 1-11, 2017; Article no.CJAST.37852

2

the cost of Cloud services as much as possible are proposed. And at the end of the article put
forward the Dynamic configuring Priority Resources Scheduling (DPS) algorithm which based on
the strategies above, and designed the relevant comparative experiments to verify the algorithm of
DPS. The results showed that the DPS algorithm can reduce the usage of resources by improving
resource utilization rate and helps the service providers to create much more profits than the other
two algorithms to a certain extent.

Keywords: Cloud computing; SLA; admission control strategy; resource scheduling algorithm.

1. INTRODUCTION

With the network bandwidth and the user
demand for service quality continues to improve,
as a new computing model of cloud computing
services are also in line with the trend of the
times. Whether it is in the data processing
efficiency, or data volume, but also continue to
improve and improve [1]. However, due to the
complexity of the user's request in the cloud
environment, the randomness and the
heterogeneity and diversity of the resources
under the cloud platform, the scheduling and
allocation of cloud resources has always been a
NP hard problem. How to accept users’ requests
reasonably and allocate resources to ensure
service providers maximizes profit without
violating the SLA constraints of users’ requests
while guaranteeing the quality of service and
enhancing user satisfaction has always been one
of the hot spots and difficulties of the research
about the cloud resource allocation schedule.

In the literature [2], it was pointed out that the
core of the problem of cloud resource scheduling
is task scheduling and resource allocation, and
the two algorithms are compared with the task
queuing model in the time of task execution.
However, the author does not take into account
the task scheduling and resource allocation
required by multitasking users, and does not
incorporate user request SLA constraints into the
cloud service impact factors. In the literature [3],
the cloud service provider could not solve the
problem of virtual machine rental cost through
the effective resource scheduling strategy under
the premise of guaranteeing the user SLA when
dealing with the workflow application request in
the cloud environment. The author proposes a
multi-workflow virtual machine resource
scheduling algorithm, which effectively reduces
the cost of virtual machine. However, this profit-
driven cloud resource scheduling algorithm does
not handle interactive application requests very
well. In the literature [4], the profit model under
the two roles was analyzed and defined from the
perspective of IaaS suppliers and SaaS

suppliers. Then the constraints of user requests
based on SLA, the four resource scheduling
strategies were integrated into three resource
scheduling algorithms, so as to reduce the
resource usage and maximize the profitability of
the service provider as much as possible.
Although the experiment achieves the expected
goal, it only considers the case that the user
request only contains a single task, and does not
consider the request of the multi task user. In the
literature [5], a fine-grained cloud computing
system model was introduced, using
reinforcement learning and queuing theory to
optimize the resource constrained scheduling
strategy based on, and through the state to
strengthen the convergence of learning progress
in order to improve the accuracy of the cloud
platform user request analysis. Although it is
emphasized that the SLA constraint requested by
the user is one of the influence factors of the
cloud service, it only considers the single subtask
in the user request.

In view of the above problems, this paper studies
the admission control strategy of multi-tasking
users based on the SLA constraint from the
perspective of cloud service agents. The profit
model is analyzed and formalized. Finally, a
priority resource allocation resource scheduling
algorithm is proposed to achieve the goal of
maximizing the profitability of cloud service
agents by maximizing resource utilization.

2. MODELING OF MULTI TASK USER

REQUEST AND PROFIT MODEL
BASED ON SLA IN CLOUD
ENVIRONMENT

2.1 Multitasking User Request Modeling

In the cloud services three-tier architecture, IaaS
vendors through virtualization technology,
different hardware facilities virtualized into a
large-scale resource pool, to cloud service
agents to provide computer capacity, network,
storage and other infrastructure services. Cloud
service agents build a variety of PaaS and SaaS

service platforms by leasing their infrastructure to
provide the end user with the required PaaS and
SaaS services. Finally, users pay cloud services
to cloud service agents on a pa
basis.

In these user requests, a user request often
contains not only a single task, but by a series of
parallel or serial multiple sub-tasks staggered in
series, and the sub-tasks between the existence
of strict precursor successor, as shown

This paper presents the multitasking user
request as a multivariate set expression as
follows:
 � � ��, �, �, �	.

Among them, the set T is cumulative task in a
user request, and �� represents the subtask

Fig. 1. Cloud service three

Fig. 2. User request neutron task dependency diagram

Liang et al.; CJAST, 24(6): 1-11, 2017; Article no.

3

service platforms by leasing their infrastructure to
provide the end user with the required PaaS and
SaaS services. Finally, users pay cloud services
to cloud service agents on a pay-as-you-go

In these user requests, a user request often
contains not only a single task, but by a series of

tasks staggered in
tasks between the existence

of strict precursor successor, as shown in Fig. 2.

This paper presents the multitasking user
request as a multivariate set expression as

Among them, the set T is cumulative task in a
represents the subtask i in

the user request. The set E is a set of directed
edges, representing the precursor dependency
between the subtasks, and ��
 denotes that the
subtask j depends on the subtask
the set of processing time for the current
subtask, and the processing time of the subtask
is �� . The set C represents the length of
information transfer between the subtasks, and ��
 represents the length of time that the
execution result of the subtask i is passed to the
subtask j.

When a user requests that a parent task has a
predecessor task in the process of being
executed, all predecessor tasks must be
completed to execute the subtask. However,
during the execution of the subtask, its successor
task can only be in a wait state. After the current
subtask is executed, the execution r
immediately passed to its subsequent task.

1. Cloud service three-tier architecture

2. User request neutron task dependency diagram

; Article no.CJAST.37852

is a set of directed
edges, representing the precursor dependency

denotes that the
depends on the subtask i. The set W is

the set of processing time for the current
subtask, and the processing time of the subtask i

represents the length of
information transfer between the subtasks, and

represents the length of time that the
is passed to the

When a user requests that a parent task has a
ssor task in the process of being

executed, all predecessor tasks must be
completed to execute the subtask. However,
during the execution of the subtask, its successor
task can only be in a wait state. After the current
subtask is executed, the execution result is
immediately passed to its subsequent task.

Liang et al.; CJAST, 24(6): 1-11, 2017; Article no.CJAST.37852

4

2.2 Profit Model Analysis and Formal
Definition of Cloud Service Agents

Cloud service agents rent infrastructure to IaaS
providers to build their own cloud services
platform, and then provide cloud services to end
users. So we can find that the revenue of the
cloud service agent is the cost of the end user. At
the same time, the cost of cloud service agents is
divided into three parts: platform deployment
costs (����������)、 IaaS service rental costs
(��������)、platform management related costs
(����������). Among them, the platform
management related costs are relatively stable,
we set it as a fixed cost.

The cloud service agent requests the l type of
virtual machine resource i on the IaaS provider j
to deploy the cloud service platform for the cost
of ������
�. With A IaaS service provider leasing,
each IaaS supplier leases Class B services, each
type of service has virtual machine resources C,
the total deployment cost is:

 ���������� � � � � (������
�)"
�#$

%

�#$

&

#$
 (1)

Since IaaS services are generally charged on
time, the paper makes the following
assumptions:

The IaaS service has a unit time charge of m_P,
and a user request has N subtasks, each of
which has a processing duration of (_*+�,�(-)（0 < - ≤ 1) . The data input time
and data output time for each subtask is �2_��
and �3_�� . The cost of data input and data
output is In_*/78 and Out_*/78 , and the
initialization time of each virtual machine is In-�_�. For the delay of user service, the linear

compensation strategy is adopted, and the
compensation factor is <(0 < < < 1) . Then, in
the case of multitasking user requests, the rental
fees for the cloud service agents are:

(1) The execution cost of all subtasks in the
user request:

 +�,���� � �((_+�,�(-) ×>
�#$ (_*) (2)

Where k is the number of subtasks on the critical
path that the user requests to perform during the
execution of the user request.

(2) The user requests the total data

transmission cost:

��_���� � �(�2_�� ×@
�#$ 2A_* + �3_�� × 3C�_*) (3)

(3) The cost of initializing a virtual machine:

 -A-�EF_���� � (2A-�_� × (_*) (4)

(4) User compensation costs:

For a new user request, the admission
control system used in two ways: (a) initialize �(0 < � ≤ 1) EF resources for the
requested N subtasks. (b) add subtasks in
the user request to the initialized VM task
list. Assuming that there are M pending tasks
in the task list, the processing time of each
task to be executed is *+�,�H , (0 < (≤ F),
the maximum time required for the user is ��I , the user sends a request for �J . The
information transfer time between tasks is �KL , N sub-tasks have at least (N-1) times
information transmission, and the delay time
of the user request is:

������ �
MNO
NP�Q + � *+�,�H

�
H#$ + � (_*+�,�(-)@

�#$ + � �KL
@R$
�#$ − ��I , (T�+U�VWX Y)

�Q + � (_*+�,�(-) +@
�#$ � �KL

@R$
�#$ + 2A-�_� × � − ��I , (T�+U�VWX U) (5)[

It can further calculate the user delay compensation cost as:
 �V\UX_���� � ������ × <(0 < < < 1) (6)

Where β is the compensation factor.

Liang et al.; CJAST, 24(6): 1-11, 2017; Article no.CJAST.37852

5

(5) The transfer cost of information during user
request execution:

2A^��+_���� � � �KL
@R$
�#$ × (_ (7)

From the above analysis, cloud service agents to
release IaaS service costs:
 m_Costefghi � ProcCost + DT_Cost + initVM_Cost+ Delay_Cost + InfoTr_Cost (8)

The paper assume that the user budget is 8Q ,
then the profit model for the cloud service agent
is:
 (_L�x��& � 8Q − ("�y� K���� − ���������� − z����{ (9)

3. SLA-BASED MULTITASKING USER

REQUEST ADMISSION CONTROL
STRATEGY AND RESOURCE
SCHEDULING ALGORITHM

3.1 SLA-based Multitasking User Request

Admission Control Strategy

In order to solve the admission control problem
of user request and the SLA default in the
process of user request execution. In this paper,
user request priority setting strategy, task
execution priority setting policy and request delay
compensation strategy are proposed
respectively. Through the combination of these
three strategies, as much as possible to accept
user requests, improve customer satisfaction,

cloud service agents to maximize the profits to
create profits.

The paper first assumed that there is no waiting
time between the sub-tasks in the user's request,
and that each sub-task is executed immediately
after the allocation of resources. This moment it
was call the ideal situation. Because a sub task
takes up resources, the length of time is divided
into two cases: (1) if the task is assigned to the
initialized virtual machine, there are data input,
output time, task processing time and information
transfer time. (2) if the new virtual machine is
initialized for the task, there are data input,
output time, task processing time, Thus, the
resulting sub-task occupancy resource time
model is:
 �_L�}� ~ �2_�� + �3_�� + (_*+�,� + �KL (1) �2_�� + �3_�� + (_*+�,� + �KL + 2A-�_� (2) (10)[

Then, when a user request has N subtasks and
allocates resources in accordance with strategy
a: W virtual machine is initialized and the user
requests the execution time of the neutron task.
The total execution time on the critical path is set
to ���� . There are:

 ���� � � (_*+�,�(-)�
�#$ (11)

Where X is the number of subtasks on the critical
path of the task execution time. Then the paper
can draw the expected processing time model for
the user's request under the ideal situation:

��_ �
MNO
NP �Q + ���� + � �KL

@R$
�#$ + �(�2_��

@
�#$ + �3_��), (T�+U�VWX Y)

�Q + ���� + � �KL
@R$
�#$ + 2A-�_� × � + �(�2K�

@
�#$ + �3K�), (T�+U�VWX U) (12)[

But the ideal is always a gap with reality, so the paper find closer to the actual situation of the user
request is expected to deal with time:

�&}} � ��_ + � *Q�_(-)��#$F × *Q�_ × � m_ProcT(i)@�#$ 1 (13)

Among them, M is the number of user requests in the current unit time, and *Q�_(-) is the priority of
the i user requests in M user requests.

3.1.1 The user requests the priority setting
strategy

Fig. 3 is a model that dynamically sets a priority
for a user request based on a user request SLA
time limit constraint and a user request
processing time. When the user's time limit is
equal to the processing time of the user request,
the highest priority is set for P_0. As the user
time limit is gradually greater than the user
requests the expected processing time, the user
request priority drops linearly. The linear model
is:
 *Q�_ � *{ − (��I − �&}}) × tan � ,���I � �&}}，0 < � <

Where tanθ sets the coefficient for the user
request priority. When a user's request is
accepted by the system, its subtask has the
same priority initial value as the user request.

Fig. 3. The user requests the priority setting

model

3.1.2 Task execution priority setting strategy

During the execution of the sub-tasks requested
by the user, the randomness of the resource
allocation and the uncertainty of the user's
request often result in some sub
unable to be completed within the SLA
time, resulting in serious default user request
SLA. To this end, the task execution priority
setting policy is presented, as shown in Fig

When a task fails to be executed within its
constraint time, the task's execution priority
increases linearly with time until the task is
executed. Its linear model is:
 *��} � *{ + �UA < × (���� − ��I)，0 < <

Liang et al.; CJAST, 24(6): 1-11, 2017; Article no.

6

The user requests the priority setting

3 is a model that dynamically sets a priority
for a user request based on a user request SLA
time limit constraint and a user request
processing time. When the user's time limit is
equal to the processing time of the user request,

. As the user
time limit is gradually greater than the user
requests the expected processing time, the user
request priority drops linearly. The linear model

< �2� (14)

sets the coefficient for the user
request priority. When a user's request is
accepted by the system, its subtask has the
same priority initial value as the user request.

3. The user requests the priority setting

execution priority setting strategy

tasks requested
by the user, the randomness of the resource
allocation and the uncertainty of the user's
request often result in some sub-tasks being
unable to be completed within the SLA constraint
time, resulting in serious default user request
SLA. To this end, the task execution priority
setting policy is presented, as shown in Fig. 4.

When a task fails to be executed within its
constraint time, the task's execution priority

linearly with time until the task is

< < �2 (15)

Where ���� is the time at which the task is finally
executed, and ��I is the SLA time limit constraint
for the task. *{ is the initial priority of the task.
tanβ sets the coefficient for the task execution
priority.

3.1.3 Request delay compensation strategy

In order to reduce the impact of the default on
the user experience when the user requests the
SLA default, the compensation method may be
used to improve the user satisfaction. As shown
in Fig. 5, the user requests the delay
compensation model.

Fig. 4. Task execution priority setting model

Fig. 5. Delayed compensation model

When the user requests a SLA default, the cloud
service agent compensates the user. The
compensation model is:
 +-,"�H � (���� − ��I) × tan�, (+-,"�H� ��I，0 < � < �2)

; Article no.CJAST.37852

is the time at which the task is finally
is the SLA time limit constraint

is the initial priority of the task.
sets the coefficient for the task execution

3.1.3 Request delay compensation strategy

In order to reduce the impact of the default on
the user experience when the user requests the

compensation method may be
used to improve the user satisfaction. As shown
in Fig. 5, the user requests the delay

4. Task execution priority setting model

5. Delayed compensation model

default, the cloud
service agent compensates the user. The

"�H ≤ (_*, ���� (16)

Liang et al.; CJAST, 24(6): 1-11, 2017; Article no.CJAST.37852

7

Among them, ���� requests execution end time
for the user, and tanα is the delay compensation
factor. m_P charges for cloud resource providers
per unit time, and is also the maximum limit for
cloud service agents to provide compensation to
users.

3.2 Resource Scheduling Algorithm

Based on SLA

After a user request is accepted by the system,
the following two strategies are used for resource
scheduling:

3.2.1 Waiting strategy

When a multitasking user requests are accepted
by the system:

1. Determine the SLA constraint for the task.
2. Check the task queue in the system that

has been initialized and satisfies the task
requirements for virtual machine
resources. If the task can wait for the task
queue of the virtual machine to complete
without violating the SLA constraint, the
next step is executed. Otherwise exit the
strategy.

3. Calculate the profit earned by cloud
service agents. If the profit is greater than
the expected value, the task and resource
allocation information is recorded in the

resource-task list. Otherwise exit the
strategy.

3.2.2 Insert strategy

When a multitasking user requests are accepted
by the system:

1. Determine the SLA constraint for the task.
2. Check whether task K exists in the recently

initialized virtual machine resource task
queue. Without violating the SLA
constraints under the premise, you can
wait for the implementation of the current
task is completed. If it exists, proceed to
the next step. Otherwise exit the strategy.

3. Set the execution priority higher than task
k for the current task.

4. Calculate the profit earned by cloud
service agents. If the profit is greater than
the expected value, the task and resource
allocation information is recorded in the
resource-task list. Otherwise exit the
strategy.

Based on the above two resource scheduling
strategies, this paper proposes a dynamic
configuration priority resource scheduling
algorithm based on SLA. The algorithm is divided
into four phases: the user requests the admission
control phase, the task resource allocation
phase, the resource scheduling phase and the
task execution phase.

Dynamic allocation priority resource scheduling algorithm based on SLA (DPS)

Input: NR, EP // NR indicates a new request and EP indicates the expected profit of Cloud service
provider
Output: Blooean
BEGIN
Phase of admission control
1: T_Acc � calculate the expected execution time of NR
2: if T_Acc ≥ T_DL
3: reject NR
4: else
5: P0 � set the priority of NR
6: check resource pool
7: Res_avail � available resources that fulfill the user's request for execution
8: if Res_avail not exit
9: reject NR
10: else
11: accept NR
Phase of resource allocation
12: for subtask in NR
13: if NR can be executed by waiting strategy
14: follow waiting strategy to assign resource to NR
15: go to step 20
16: else if NR can be executed by Insert strategy

Liang et al.; CJAST, 24(6): 1-11, 2017; Article no.CJAST.37852

8

17: follow Insert strategy to assign resource to NR
18: go to step 20
19: else initialize new vm for NR
Phase of resource scheduling
20: Res_cor � get corresponding resource from the resource-tasks list
21: schedule NR to Res_cor to be processed
Phase of task execution
22: Subtasks_vio� subtasks that has violated the SLA constraints
23: for Subtask_v in Subtasks_vio
24: *� � *��} of Subtask_v
25: end for
26: tasks are executed according to the level of tasks priority *�
27: if NR violates the SLA constraints of user’s request
28: compensate user according to request delay compensation strategy
29: end for
30: return the result of NR
31: end if
32: end if
END

4. EXPERIMENTAL PRESENTATION AND

ANALYSIS

4.1 Experimental Design

4.1.1 Design of experiment scheme

In this paper, Workflow Generator tools are used
to simulate N subtasks. There are seven sub-
tasks in each user request, the processing time
of each subtask, the dependencies between
subtasks, and the time consumption between
subtasks, as shown in Fig. 6.

Where the set T represents the cumulative task
node, and the number above the node
represents the processing time of the cumulative
task. The directed edge represents the
dependency between the subtasks, and the
weight on the directed edge represents the time
consumption between the cumulative task.

In addition, in order to simplify the experiment
process, the following regulations are made:

(1) The user request must be generated in
accordance with the Poisson distribution.
The total number of user requests is 200,
400, 600, 800, 1000 five groups to
experiment.

(2) The maximum virtual machine resource is
100.

(3) The implementation constraint for each
user request is: ��I � FU�� × (1 + �) .
Among them, α=0.3 is a variable constraint

factor, and MaxT is the task execution time
of the critical path between user requests
and neutron task execution.

(4) Cloud services are charged when
resources are used. IaaS vendors charge
are P_i=0.3. The service default probability
is 0.25. User time bound factor is α=0.3.
Service compensation factor is β=0.2.

(5) The user budget is B_u=30. Platform
integration costs and platform
management costs are not considered.

(6) For other parameter settings during the
experiment, it is required to obey Gaussian
distribution.

4.1.2 Reference algorithm design

To avoid the contingency in the experiment, two
reference algorithms are listed here:

(1) BS (Backfill Scheduling) algorithm [6]

The algorithm is based on the FCFS (First Come
First Serve) scheduling algorithm, which allows
the job in the job queue to be executed in
advance using idle resources without delaying
the execution of the front end of the queue. In
this way, it can solve the problem of idle
computing resources and low resource utilization
in the FCFS scheduling process. The
fundamental purpose of the algorithm is to run
the smaller jobs as early as possible. In
improving the utilization of system resources and
task response time, while avoiding some of the
larger jobs were "starved to death" [7].

Liang et al.; CJAST, 24(6): 1-11, 2017; Article no.CJAST.37852

9

Fig. 6. Multitasking user request

(2) Earliest Deadline First (EDF) algorithm [8]

The algorithm configures the priority according to
the time constraint length of the current task. The
shorter the task time limit, the higher the priority
of the task. The system will assign scheduling
resources based on the priority of the task. In the
execution of a task, if there is a task higher than
the current priority. Immediately stop the
execution of the current task and turn to a higher
priority task. The execution of the original task is
resumed until there is no high priority task in the
task queue. The algorithm is a dynamic priority
scheduling algorithm, which is proved to be able
to achieve dynamic optimal scheduling.
Resource utilization can also be up to 100%.
However, insufficient is likely to cause system
overloads. Once a task is lost, it often causes a
series of tasks to be lost [9].

4.2 Experimental Results Show and
Analysis

The experiment mainly from the multi-tasking
user request under the three algorithms, the
virtual machine resource occupancy and profit
situation comparison.

4.2.1 Virtual machine resource occupancy

analysis

As shown in Fig. 7, under the three algorithms,
the virtual machine resource occupancy is
increased as the number of user requests
increases from 200 to 1000 step by step. Among
them, the BS algorithm always maintains a
higher amount of resources, because the
algorithm mainly meets the increasing user
requirements by constantly initializing the virtual
machine resources for the new task. The EDF
algorithm has the least amount of resource
occupation when the user requests less. But
when the user requests increase to 800, the
occupation of resources is skyrocketing.
Because the number of users is small, the

algorithm can guarantee higher resource
utilization. However, when the user data
increases, the system will gradually appear
overload situation, so the need to constantly
initialize the virtual machine resources to meet
the needs of user growth. In the whole process,
the DPS algorithm can maintain a more balanced
resource occupation no matter whether the
number of users is small or more.

4.2.2 Analysis on profit acquisition of cloud

service agents

As shown in Fig. 8, with the increase in the
number of users, cloud service agents to obtain
profits also increased. In the process of
increasing the number of user requests from 200
to 400, the EDF algorithm gains the highest
profits, and the BS algorithm achieves the least
profit. However, with the further increase in the
number of user requests, DPS algorithm and BS
algorithm to obtain the profits gradually more
than EDF algorithm. The DPS algorithm gains
less profit than the EDF algorithm when the user
requests less. However, in the process of
increasing user requests, the algorithm can
maintain a relatively stable growth trend.

From the above experimental results, EDF
algorithm has a great advantage in terms of
resource consumption and profit acquisition
when the user requests less. However, with the
increase of the number of users, the problem of
EDF algorithm is gradually highlighted. From the
overall view of the experiment, the DPS
algorithm has a better performance in terms of
resource occupation and profit gain when dealing
with more user requests. Therefore, the DPS
algorithm is more suitable for strict compliance
with SLA constraints. The algorithm can also
achieve the desired goal to a certain extent on
the resource scheduling problem of cloud service
agents with more user requests. The DPS
algorithm uses less resources to create as much
profit as possible.

Fig. 7. Resource occupancy under three algorithms

Fig. 8. Profitability of cloud service agents

5. CONCLUSION

This paper analyzed and formalized the profit
capture problem and profit model of cloud
service agents in the cloud environment. Then,
according to the admission control problem
requested by the multitasking user, a user
request admission control strategy is proposed to
accept the user request as much as possible. For
SLA defaults that may exist in task execution,
task priority setting strategy and user request
delay compensation strategy are proposed
respectively. This will minimize the SLA default
during task execution. As well as in the event of
a SLA default, through the compensation way to
ensure customer satisfaction. Finally, a dynamic
allocation priority resource scheduling al
based on SLA is proposed based on two

Liang et al.; CJAST, 24(6): 1-11, 2017; Article no.

10

7. Resource occupancy under three algorithms

8. Profitability of cloud service agents

This paper analyzed and formalized the profit
capture problem and profit model of cloud
service agents in the cloud environment. Then,
according to the admission control problem

uested by the multitasking user, a user
request admission control strategy is proposed to
accept the user request as much as possible. For
SLA defaults that may exist in task execution,
task priority setting strategy and user request

ategy are proposed
respectively. This will minimize the SLA default
during task execution. As well as in the event of
a SLA default, through the compensation way to
ensure customer satisfaction. Finally, a dynamic
allocation priority resource scheduling algorithm
based on SLA is proposed based on two

resource scheduling strategies. In addition, the
algorithm was verified by experiments. The final
experimental results show that the algorithm can
generate more profit benefit for cloud service
agents by reducing the amount of resource
occupation.

COMPETING INTERESTS

Authors have declared that no competing
interests exist.

REFERENCES

1. Shengjun Xue, Wenling Shi and Xiaolong

Xu. A heuristic scheduling algorithm
on PSO in the cloud computing
environment. Science and Engineering

; Article no.CJAST.37852

resource scheduling strategies. In addition, the
algorithm was verified by experiments. The final
experimental results show that the algorithm can
generate more profit benefit for cloud service

ng the amount of resource

Authors have declared that no competing

Xue, Wenling Shi and Xiaolong
heuristic scheduling algorithm based

cloud computing
. Science and Engineering

Liang et al.; CJAST, 24(6): 1-11, 2017; Article no.CJAST.37852

11

Research Support Society [J]. 2016;(9):
349-362.

2. Gawali MB, Shinde SK. Implementation of
IDEA, BATS, ARIMA and queuing model
for task scheduling in cloud computing [C].
Fifth International Conference on Eco-
Friendly Computing and Communication
Systems. IEEE. 2017;7-12.

3. Hu R. Research and realization of
high benefit resource scheduling
mechanism in cloud computing [D].
Beijing: Beijing University of Posts and
Telecommunications; 2012.

4. Linlin Wu, Saurabh Kumar Garg, Rajkumar
Bu-Yya. SLA-based admission control for a
software-as-a-Service Provider in Cloud
computing environments [J]. Computer and
System Sciences. 2012;78:1280-1299.

5. Peng Z, Cui D, Zuo J, et al. Random
task scheduling scheme based on

reinforcement learning in cloud computing
[J]. Cluster Computing. 2015;18(4):1595-
1607.

6. Li W, Shi H. Dynamic load balancing
algorithm based on FCFS [C] 2009. 4th
International Conference on Innovative
Computing, In Formati-on and Control.
[s.1.]: [s.n.]. 2009;1528-1531.

7. Fu YH. Research on parallel computing
job scheduling algorithm based on
backfill [D]. Changsha: Hunan University;
2007.

8. Jiang H. Research on the earliest insertion
time of task based on EDF algorithm [D].
Changsha: Hunan Normal University;
2012.

9. Li X J, Li K. A RQ job scheduling algorithm
based on dynamic priority [J]. Small
Microcomputer System. 2017;38(1):124-
128.

© 2017 Liang et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:

http://sciencedomain.org/review-history/22183

